6 research outputs found

    Pre-train, Interact, Fine-tune: A Novel Interaction Representation for Text Classification

    Get PDF
    Text representation can aid machines in understanding text. Previous work on text representation often focuses on the so-called forward implication, i.e., preceding words are taken as the context of later words for creating representations, thus ignoring the fact that the semantics of a text segment is a product of the mutual implication of words in the text: later words contribute to the meaning of preceding words. We introduce the concept of interaction and propose a two-perspective interaction representation, that encapsulates a local and a global interaction representation. Here, a local interaction representation is one that interacts among words with parent-children relationships on the syntactic trees and a global interaction interpretation is one that interacts among all the words in a sentence. We combine the two interaction representations to develop a Hybrid Interaction Representation (HIR). Inspired by existing feature-based and fine-tuning-based pretrain-finetuning approaches to language models, we integrate the advantages of feature-based and fine-tuning-based methods to propose the Pre-train, Interact, Fine-tune (PIF) architecture. We evaluate our proposed models on five widely-used datasets for text classification tasks. Our ensemble method, outperforms state-of-the-art baselines with improvements ranging from 2.03% to 3.15% in terms of error rate. In addition, we find that, the improvements of PIF against most state-of-the-art methods is not affected by increasing of the length of the text.Comment: 32 pages, 5 figure

    Robust Parsing for Ungrammatical Sentences

    Get PDF
    Natural Language Processing (NLP) is a research area that specializes in studying computational approaches to human language. However, not all of the natural language sentences are grammatically correct. Sentences that are ungrammatical, awkward, or too casual/colloquial tend to appear in a variety of NLP applications, from product reviews and social media analysis to intelligent language tutors or multilingual processing. In this thesis, we focus on parsing, because it is an essential component of many NLP applications. We investigate in what ways the performances of statistical parsers degrade when dealing with ungrammatical sentences. We also hypothesize that breaking up parse trees from problematic parts prevents NLP applications from degrading due to incorrect syntactic analysis. A parser is robust if it can overlook problems such as grammar mistakes and produce a parse tree that closely resembles the correct analysis for the intended sentence. We develop a robustness evaluation metric and conduct a series of experiments to compare the performances of state-of-the-art parsers on the ungrammatical sentences. The evaluation results show that ungrammatical sentences present challenges for statistical parsers, because the well-formed syntactic trees they produce may not be appropriate for ungrammatical sentences. We also define a new framework for reviewing the parses of ungrammatical sentences and extracting the coherent parts whose syntactic analyses make sense. We call this task parse tree fragmentation. The experimental results suggest that the proposed overall fragmentation framework is a promising way to handle syntactically unusual sentences
    corecore