418 research outputs found

    Explicit exponential Runge-Kutta methods for semilinear parabolic problems

    Get PDF
    Abstract. The aim of this paper is to analyze explicit exponential Runge-Kutta methods for the time integration of semilinear parabolic problems. The analysis is performed in an abstract Banach space framework of sectorial operators and locally Lipschitz continuous nonlinearities. We commence by giving a new and short derivation of the classical (nonsti®) order conditions for exponential Runge-Kutta methods, but the main interest of our paper lies in the sti ® case. By expanding the errors of the numerical method in terms of the solution, we derive new order conditions that form the basis of our error bounds for parabolic problems. We show convergence for methods up to order four and we analyze methods that were recently presented in the literature. These methods have classical order four, but they do not satisfy some of the new conditions. Therefore, an order reduction is expected. We present numerical experiments which show that this order reduction in fact arises in practical examples. Based on our new conditions, we ¯nally construct methods that do not su®er from order reduction. 1. Introduction. Motivate

    On the convergence of Lawson methods for semilinear stiff problems

    Get PDF
    Since their introduction in 1967, Lawson methods have achieved constant interest in the time discretization of evolution equations. The methods were originally devised for the numerical solution of stiff differential equations. Meanwhile, they constitute a well-established class of exponential integrators. The popularity of Lawson methods is in some contrast to the fact that they may have a bad convergence behaviour, since they do not satisfy any of the stiff order conditions. The aim of this paper is to explain this discrepancy. It is shown that non-stiff order conditions together with appropriate regularity assumptions imply high-order convergence of Lawson methods. Note, however, that the term regularity here includes the behaviour of the solution at the boundary. For instance, Lawson methods will behave well in the case of periodic boundary conditions, but they will show a dramatic order reduction for, e.g., Dirichlet boundary conditions. The precise regularity assumptions required for high-order convergence are worked out in this paper and related to the corresponding assumptions for splitting schemes. In contrast to previous work, the analysis is based on expansions of the exact and the numerical solution along the flow of the homogeneous problem. Numerical examples for the Schr\"odinger equation are included

    Solving periodic semilinear stiff PDEs in 1D, 2D and 3D with exponential integrators

    Get PDF
    Dozens of exponential integration formulas have been proposed for the high-accuracy solution of stiff PDEs such as the Allen-Cahn, Korteweg-de Vries and Ginzburg-Landau equations. We report the results of extensive comparisons in MATLAB and Chebfun of such formulas in 1D, 2D and 3D, focusing on fourth and higher order methods, and periodic semilinear stiff PDEs with constant coefficients. Our conclusion is that it is hard to do much better than one of the simplest of these formulas, the ETDRK4 scheme of Cox and Matthews

    Explicit exponential Runge-Kutta methods for semilinear integro-differential equations

    Full text link
    The aim of this paper is to construct and analyze explicit exponential Runge-Kutta methods for the temporal discretization of linear and semilinear integro-differential equations. By expanding the errors of the numerical method in terms of the solution, we derive order conditions that form the basis of our error bounds for integro-differential equations. The order conditions are further used for constructing numerical methods. The convergence analysis is performed in a Hilbert space setting, where the smoothing effect of the resolvent family is heavily used. For the linear case, we derive the order conditions for general order pp and prove convergence of order pp, whenever these conditions are satisfied. In the semilinear case, we consider in addition spatial discretization by a spectral Galerkin method, and we require locally Lipschitz continuous nonlinearities. We derive the order conditions for orders one and two, construct methods satisfying these conditions and prove their convergence. Finally, some numerical experiments illustrating our theoretical results are given

    Evaluating matrix functions for exponential integrators via Carathéodory-Fejér approximation and contour integrals

    Get PDF
    Among the fastest methods for solving stiff PDE are exponential integrators, which require the evaluation of f(A)f(A), where AA is a negative definite matrix and ff is the exponential function or one of the related ``φ\varphi functions'' such as φ1(z)=(ez1)/z\varphi_1(z) = (e^z-1)/z. Building on previous work by Trefethen and Gutknecht, Gonchar and Rakhmanov, and Lu, we propose two methods for the fast evaluation of f(A)f(A) that are especially useful when shifted systems (A+zI)x=b(A+zI)x=b can be solved efficiently, e.g. by a sparse direct solver. The first method method is based on best rational approximations to ff on the negative real axis computed via the Carathéodory-Fejér procedure, and we conjecture that the accuracy scales as (9.28903)2n(9.28903\dots)^{-2n}, where nn is the number of complex matrix solves. In particular, three matrix solves suffice to evaluate f(A)f(A) to approximately six digits of accuracy. The second method is an application of the trapezoid rule on a Talbot-type contour

    Exponentially accurate Hamiltonian embeddings of symplectic A-stable Runge--Kutta methods for Hamiltonian semilinear evolution equations

    Get PDF
    We prove that a class of A-stable symplectic Runge--Kutta time semidiscretizations (including the Gauss--Legendre methods) applied to a class of semilinear Hamiltonian PDEs which are well-posed on spaces of analytic functions with analytic initial data can be embedded into a modified Hamiltonian flow up to an exponentially small error. As a consequence, such time-semidiscretizations conserve the modified Hamiltonian up to an exponentially small error. The modified Hamiltonian is O(hp)O(h^p)-close to the original energy where pp is the order of the method and hh the time step-size. Examples of such systems are the semilinear wave equation or the nonlinear Schr\"odinger equation with analytic nonlinearity and periodic boundary conditions. Standard Hamiltonian interpolation results do not apply here because of the occurrence of unbounded operators in the construction of the modified vector field. This loss of regularity in the construction can be taken care of by projecting the PDE to a subspace where the operators occurring in the evolution equation are bounded and by coupling the number of excited modes as well as the number of terms in the expansion of the modified vector field with the step size. This way we obtain exponential estimates of the form O(exp(c/h1/(1+q)))O(\exp(-c/h^{1/(1+q)})) with c>0c>0 and q0q \geq 0; for the semilinear wave equation, q=1q=1, and for the nonlinear Schr\"odinger equation, q=2q=2. We give an example which shows that analyticity of the initial data is necessary to obtain exponential estimates
    corecore