137 research outputs found

    Carleman Linearization of Nonlinear Systems and Its Finite-Section Approximations

    Full text link
    The Carleman linearization is one of the mainstream approaches to lift a finite-dimensional nonlinear dynamical system into an infinite-dimensional linear system with the promise of providing accurate approximations of the original nonlinear system over larger regions around the equilibrium for longer time horizons with respect to the conventional first-order linearization approach. Finite-section approximations of the lifted system has been widely used to study dynamical and control properties of the original nonlinear system. In this context, some of the outstanding problems are to determine under what conditions, as the finite-section order (i.e., truncation length) increases, the trajectory of the resulting approximate linear system from the finite-section scheme converges to that of the original nonlinear system and whether the time interval over which the convergence happens can be quantified explicitly. In this paper, we provide explicit error bounds for the finite-section approximation and prove that the convergence is indeed exponential with respect to the finite-section order. For a class of nonlinear systems, it is shown that one can achieve exponential convergence over the entire time horizon up to infinity. Our results are practically plausible as our proposed error bound estimates can be used to compute proper truncation lengths for a given application, e.g., determining proper sampling period for model predictive control and reachability analysis for safety verifications. We validate our theoretical findings through several illustrative simulations.Comment: 25 Pages, 10 figure

    Koopman Spectral Linearization vs. Carleman Linearization: A Computational Comparison Study

    Full text link
    Nonlinearity presents a significant challenge in problems involving dynamical systems, prompting the exploration of various linearization techniques, including the well-known Carleman Linearization. In this paper, we introduce the Koopman Spectral Linearization method tailored for nonlinear autonomous dynamical systems. This innovative linearization approach harnesses the Chebyshev differentiation matrix and the Koopman Operator to yield a lifted linear system. It holds the promise of serving as an alternative approach that can be employed in scenarios where Carleman linearization is traditionally applied. Numerical experiments demonstrate the effectiveness of this linearization approach for several commonly used nonlinear dynamical systems.Comment: 17 pages, 7 figure

    Potential quantum advantage for simulation of fluid dynamics

    Full text link
    Numerical simulation of turbulent fluid dynamics needs to either parameterize turbulence-which introduces large uncertainties-or explicitly resolve the smallest scales-which is prohibitively expensive. Here we provide evidence through analytic bounds and numerical studies that a potential quantum exponential speedup can be achieved to simulate the Navier-Stokes equations governing turbulence using quantum computing. Specifically, we provide a formulation of the lattice Boltzmann equation for which we give evidence that low-order Carleman linearization is much more accurate than previously believed for these systems and that for computationally interesting examples. This is achieved via a combination of reformulating the nonlinearity and accurately linearizing the dynamical equations, effectively trading nonlinearity for additional degrees of freedom that add negligible expense in the quantum solver. Based on this we apply a quantum algorithm for simulating the Carleman-linerized lattice Boltzmann equation and provide evidence that its cost scales logarithmically with system size, compared to polynomial scaling in the best known classical algorithms. This work suggests that an exponential quantum advantage may exist for simulating fluid dynamics, paving the way for simulating nonlinear multiscale transport phenomena in a wide range of disciplines using quantum computing

    A Class of Logistic Functions for Approximating State-Inclusive Koopman Operators

    Full text link
    An outstanding challenge in nonlinear systems theory is identification or learning of a given nonlinear system's Koopman operator directly from data or models. Advances in extended dynamic mode decomposition approaches and machine learning methods have enabled data-driven discovery of Koopman operators, for both continuous and discrete-time systems. Since Koopman operators are often infinite-dimensional, they are approximated in practice using finite-dimensional systems. The fidelity and convergence of a given finite-dimensional Koopman approximation is a subject of ongoing research. In this paper we introduce a class of Koopman observable functions that confer an approximate closure property on their corresponding finite-dimensional approximations of the Koopman operator. We derive error bounds for the fidelity of this class of observable functions, as well as identify two key learning parameters which can be used to tune performance. We illustrate our approach on two classical nonlinear system models: the Van Der Pol oscillator and the bistable toggle switch.Comment: 8 page

    Quantum algorithms for linear and non-linear fractional reaction-diffusion equations

    Full text link
    High-dimensional fractional reaction-diffusion equations have numerous applications in the fields of biology, chemistry, and physics, and exhibit a range of rich phenomena. While classical algorithms have an exponential complexity in the spatial dimension, a quantum computer can produce a quantum state that encodes the solution with only polynomial complexity, provided that suitable input access is available. In this work, we investigate efficient quantum algorithms for linear and nonlinear fractional reaction-diffusion equations with periodic boundary conditions. For linear equations, we analyze and compare the complexity of various methods, including the second-order Trotter formula, time-marching method, and truncated Dyson series method. We also present a novel algorithm that combines the linear combination of Hamiltonian simulation technique with the interaction picture formalism, resulting in optimal scaling in the spatial dimension. For nonlinear equations, we employ the Carleman linearization method and propose a block-encoding version that is appropriate for the dense matrices that arise from the spatial discretization of fractional reaction-diffusion equations

    Towards provably efficient quantum algorithms for large-scale machine-learning models

    Get PDF
    Large machine learning models are revolutionary technologies of artificial intelligence whose bottlenecks include huge computational expenses, power, and time used both in the pre-training and fine-tuning process. In this work, we show that fault-tolerant quantum computing could possibly provide provably efficient resolutions for generic (stochastic) gradient descent algorithms, scaling as O(T2×polylog(n))\mathcal{O}(T^2 \times \text{polylog}(n)), where nn is the size of the models and TT is the number of iterations in the training, as long as the models are both sufficiently dissipative and sparse, with small learning rates. Based on earlier efficient quantum algorithms for dissipative differential equations, we find and prove that similar algorithms work for (stochastic) gradient descent, the primary algorithm for machine learning. In practice, we benchmark instances of large machine learning models from 7 million to 103 million parameters. We find that, in the context of sparse training, a quantum enhancement is possible at the early stage of learning after model pruning, motivating a sparse parameter download and re-upload scheme. Our work shows solidly that fault-tolerant quantum algorithms could potentially contribute to most state-of-the-art, large-scale machine-learning problems.Comment: 7+30 pages, 3+5 figure
    • …
    corecore