282 research outputs found

    On monotone circuits with local oracles and clique lower bounds

    Get PDF
    We investigate monotone circuits with local oracles [K., 2016], i.e., circuits containing additional inputs yi=yi(x)y_i = y_i(\vec{x}) that can perform unstructured computations on the input string x\vec{x}. Let μ[0,1]\mu \in [0,1] be the locality of the circuit, a parameter that bounds the combined strength of the oracle functions yi(x)y_i(\vec{x}), and Un,k,Vn,k{0,1}mU_{n,k}, V_{n,k} \subseteq \{0,1\}^m be the set of kk-cliques and the set of complete (k1)(k-1)-partite graphs, respectively (similarly to [Razborov, 1985]). Our results can be informally stated as follows. 1. For an appropriate extension of depth-22 monotone circuits with local oracles, we show that the size of the smallest circuits separating Un,3U_{n,3} (triangles) and Vn,3V_{n,3} (complete bipartite graphs) undergoes two phase transitions according to μ\mu. 2. For 5k(n)n1/45 \leq k(n) \leq n^{1/4}, arbitrary depth, and μ1/50\mu \leq 1/50, we prove that the monotone circuit size complexity of separating the sets Un,kU_{n,k} and Vn,kV_{n,k} is nΘ(k)n^{\Theta(\sqrt{k})}, under a certain restrictive assumption on the local oracle gates. The second result, which concerns monotone circuits with restricted oracles, extends and provides a matching upper bound for the exponential lower bounds on the monotone circuit size complexity of kk-clique obtained by Alon and Boppana (1987).Comment: Updated acknowledgements and funding informatio

    Sign rank versus VC dimension

    Full text link
    This work studies the maximum possible sign rank of N×NN \times N sign matrices with a given VC dimension dd. For d=1d=1, this maximum is {three}. For d=2d=2, this maximum is Θ~(N1/2)\tilde{\Theta}(N^{1/2}). For d>2d >2, similar but slightly less accurate statements hold. {The lower bounds improve over previous ones by Ben-David et al., and the upper bounds are novel.} The lower bounds are obtained by probabilistic constructions, using a theorem of Warren in real algebraic topology. The upper bounds are obtained using a result of Welzl about spanning trees with low stabbing number, and using the moment curve. The upper bound technique is also used to: (i) provide estimates on the number of classes of a given VC dimension, and the number of maximum classes of a given VC dimension -- answering a question of Frankl from '89, and (ii) design an efficient algorithm that provides an O(N/log(N))O(N/\log(N)) multiplicative approximation for the sign rank. We also observe a general connection between sign rank and spectral gaps which is based on Forster's argument. Consider the N×NN \times N adjacency matrix of a Δ\Delta regular graph with a second eigenvalue of absolute value λ\lambda and ΔN/2\Delta \leq N/2. We show that the sign rank of the signed version of this matrix is at least Δ/λ\Delta/\lambda. We use this connection to prove the existence of a maximum class C{±1}NC\subseteq\{\pm 1\}^N with VC dimension 22 and sign rank Θ~(N1/2)\tilde{\Theta}(N^{1/2}). This answers a question of Ben-David et al.~regarding the sign rank of large VC classes. We also describe limitations of this approach, in the spirit of the Alon-Boppana theorem. We further describe connections to communication complexity, geometry, learning theory, and combinatorics.Comment: 33 pages. This is a revised version of the paper "Sign rank versus VC dimension". Additional results in this version: (i) Estimates on the number of maximum VC classes (answering a question of Frankl from '89). (ii) Estimates on the sign rank of large VC classes (answering a question of Ben-David et al. from '03). (iii) A discussion on the computational complexity of computing the sign-ran
    corecore