18,525 research outputs found

    An Answer Explanation Model for Probabilistic Database Queries

    Get PDF
    Following the availability of huge amounts of uncertain data, coming from diverse ranges of applications such as sensors, machine learning or mining approaches, information extraction and integration, etc. in recent years, we have seen a revival of interests in probabilistic databases. Queries over these databases result in probabilistic answers. As the process of arriving at these answers is based on the underlying stored uncertain data, we argue that from the standpoint of an end user, it is helpful for such a system to give an explanation on how it arrives at an answer and on which uncertainty assumptions the derived answer is based. In this way, the user with his/her own knowledge can decide how much confidence to place in this probabilistic answer. \ud The aim of this paper is to design such an answer explanation model for probabilistic database queries. We report our design principles and show the methods to compute the answer explanations. One of the main contributions of our model is that it fills the gap between giving only the answer probability, and giving the full derivation. Furthermore, we show how to balance verifiability and influence of explanation components through the concept of verifiable views. The behavior of the model and its computational efficiency are demonstrated through an extensive performance study

    Fast and Simple Relational Processing of Uncertain Data

    Full text link
    This paper introduces U-relations, a succinct and purely relational representation system for uncertain databases. U-relations support attribute-level uncertainty using vertical partitioning. If we consider positive relational algebra extended by an operation for computing possible answers, a query on the logical level can be translated into, and evaluated as, a single relational algebra query on the U-relation representation. The translation scheme essentially preserves the size of the query in terms of number of operations and, in particular, number of joins. Standard techniques employed in off-the-shelf relational database management systems are effective for optimizing and processing queries on U-relations. In our experiments we show that query evaluation on U-relations scales to large amounts of data with high degrees of uncertainty.Comment: 12 pages, 14 figure

    08421 Abstracts Collection -- Uncertainty Management in Information Systems

    Get PDF
    From October 12 to 17, 2008 the Dagstuhl Seminar 08421 \u27`Uncertainty Management in Information Systems \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. The abstracts of the plenary and session talks given during the seminar as well as those of the shown demos are put together in this paper

    Student questioning : a componential analysis

    Get PDF
    This article reviews the literature on student questioning, organized through a modified version of Dillon's (1988a, 1990) componential model of questioning. Special attention is given to the properties of assumptions, questions, and answers. Each of these main elements are the result of certain actions of the questioner, which are described. Within this framework a variety of aspects of questioning are highlighted. One focus of the article is individual differences in question asking. The complex interactions between students' personal characteristics, social factors, and questioning are examined. In addition, a number of important but neglected topics for research are identified. Together, the views that are presented should deepen our understanding of student questioning

    Construction contract risk identification based on knowledge-augmented language model

    Full text link
    Contract review is an essential step in construction projects to prevent potential losses. However, the current methods for reviewing construction contracts lack effectiveness and reliability, leading to time-consuming and error-prone processes. While large language models (LLMs) have shown promise in revolutionizing natural language processing (NLP) tasks, they struggle with domain-specific knowledge and addressing specialized issues. This paper presents a novel approach that leverages LLMs with construction contract knowledge to emulate the process of contract review by human experts. Our tuning-free approach incorporates construction contract domain knowledge to enhance language models for identifying construction contract risks. The use of a natural language when building the domain knowledge base facilitates practical implementation. We evaluated our method on real construction contracts and achieved solid performance. Additionally, we investigated how large language models employ logical thinking during the task and provide insights and recommendations for future research

    Reason Maintenance - Conceptual Framework

    Get PDF
    This paper describes the conceptual framework for reason maintenance developed as part of WP2
    corecore