8 research outputs found

    Explainable online ensemble of deep neural network pruning for time series forecasting

    Get PDF
    Both the complex and evolving nature of time series data make forecasting among one of the most challenging tasks in machine learning. Typical methods for forecasting are designed to model time-evolving dependencies between data observations. However, it is generally accepted that none of them are universally valid for every application. Therefore, methods for learning heterogeneous ensembles by combining a diverse set of forecasters together appears as a promising solution to tackle this task. While several approaches in the context of time series forecasting have focused on how to combine individual models in an ensemble, ranging from simple and enhanced averaging tactics to applying meta-learning methods, few works have tackled the task of ensemble pruning, i.e. individual model selection to take part in the ensemble. In addition, in classical ML literature, ensemble pruning techniques are mostly restricted to operate in a static manner. To deal with changes in the relative performance of models as well as changes in the data distribution, we employ gradient-based saliency maps for online ensemble pruning of deep neural networks. This method consists of generating individual models’ performance saliency maps that are subsequently used to prune the ensemble by taking into account both aspects of accuracy and diversity. In addition, the saliency maps can be exploited to provide suitable explanations for the reason behind selecting specific models to construct an ensemble that plays the role of a forecaster at a certain time interval or instant. An extensive empirical study on many real-world datasets demonstrates that our method achieves excellent or on par results in comparison to the state-of-the-art approaches as well as several baselines. Our code is available on Github (https://github.com/MatthiasJakobs/os-pgsm/tree/ecml_journal_2022)

    Efficient deep ensembles by averaging neural networks in parameter space

    Get PDF
    Although deep ensembles provide large accuracy boosts relative to individual models, their use is not widespread in environments in which computational constraints are limited, as deep ensembles require storing M models and require M forward passes at prediction time. We propose a novel, computationally efficient alternative, which we name permAVG. Although deep ensembles cannot simply be average in parameter space, as all models find distinct perhaps distant local optima, permAVG exploits the symmetries of the loss landscape by learning permutations, such that all M models can be permuted into the same local optimum and can thereafter safely be averaged

    From Anecdotal Evidence to Quantitative Evaluation Methods:A Systematic Review on Evaluating Explainable AI

    Get PDF
    The rising popularity of explainable artificial intelligence (XAI) to understand high-performing black boxes, also raised the question of how to evaluate explanations of machine learning (ML) models. While interpretability and explainability are often presented as a subjectively validated binary property, we consider it a multi-faceted concept. We identify 12 conceptual properties, such as Compactness and Correctness, that should be evaluated for comprehensively assessing the quality of an explanation. Our so-called Co-12 properties serve as categorization scheme for systematically reviewing the evaluation practice of more than 300 papers published in the last 7 years at major AI and ML conferences that introduce an XAI method. We find that 1 in 3 papers evaluate exclusively with anecdotal evidence, and 1 in 5 papers evaluate with users. We also contribute to the call for objective, quantifiable evaluation methods by presenting an extensive overview of quantitative XAI evaluation methods. This systematic collection of evaluation methods provides researchers and practitioners with concrete tools to thoroughly validate, benchmark and compare new and existing XAI methods. This also opens up opportunities to include quantitative metrics as optimization criteria during model training in order to optimize for accuracy and interpretability simultaneously.Comment: Link to website added: https://utwente-dmb.github.io/xai-papers
    corecore