88 research outputs found

    Enhancing Transparency and Control when Drawing Data-Driven Inferences about Individuals

    Get PDF
    Recent studies have shown that information disclosed on social network sites (such as Facebook) can be used to predict personal characteristics with surprisingly high accuracy. In this paper we examine a method to give online users transparency into why certain inferences are made about them by statistical models, and control to inhibit those inferences by hiding ("cloaking") certain personal information from inference. We use this method to examine whether such transparency and control would be a reasonable goal by assessing how difficult it would be for users to actually inhibit inferences. Applying the method to data from a large collection of real users on Facebook, we show that a user must cloak only a small portion of her Facebook Likes in order to inhibit inferences about their personal characteristics. However, we also show that in response a firm could change its modeling of users to make cloaking more difficult.Comment: presented at 2016 ICML Workshop on Human Interpretability in Machine Learning (WHI 2016), New York, N

    Explainable Text Classification in Legal Document Review A Case Study of Explainable Predictive Coding

    Full text link
    In today's legal environment, lawsuits and regulatory investigations require companies to embark upon increasingly intensive data-focused engagements to identify, collect and analyze large quantities of data. When documents are staged for review the process can require companies to dedicate an extraordinary level of resources, both with respect to human resources, but also with respect to the use of technology-based techniques to intelligently sift through data. For several years, attorneys have been using a variety of tools to conduct this exercise, and most recently, they are accepting the use of machine learning techniques like text classification to efficiently cull massive volumes of data to identify responsive documents for use in these matters. In recent years, a group of AI and Machine Learning researchers have been actively researching Explainable AI. In an explainable AI system, actions or decisions are human understandable. In typical legal `document review' scenarios, a document can be identified as responsive, as long as one or more of the text snippets in a document are deemed responsive. In these scenarios, if predictive coding can be used to locate these responsive snippets, then attorneys could easily evaluate the model's document classification decision. When deployed with defined and explainable results, predictive coding can drastically enhance the overall quality and speed of the document review process by reducing the time it takes to review documents. The authors of this paper propose the concept of explainable predictive coding and simple explainable predictive coding methods to locate responsive snippets within responsive documents. We also report our preliminary experimental results using the data from an actual legal matter that entailed this type of document review.Comment: 2018 IEEE International Conference on Big Dat

    Inverse Classification for Comparison-based Interpretability in Machine Learning

    Full text link
    In the context of post-hoc interpretability, this paper addresses the task of explaining the prediction of a classifier, considering the case where no information is available, neither on the classifier itself, nor on the processed data (neither the training nor the test data). It proposes an instance-based approach whose principle consists in determining the minimal changes needed to alter a prediction: given a data point whose classification must be explained, the proposed method consists in identifying a close neighbour classified differently, where the closeness definition integrates a sparsity constraint. This principle is implemented using observation generation in the Growing Spheres algorithm. Experimental results on two datasets illustrate the relevance of the proposed approach that can be used to gain knowledge about the classifier.Comment: preprin

    Cody: An Interactive Machine Learning System for Qualitative Coding

    Get PDF
    Qualitative coding, the process of assigning labels to text as part of qualitative analysis, is time-consuming and repetitive, especially for large datasets. While available QDAS sometimes allows the semi-automated extension of annotations to unseen data, recent user studies revealed critical issues. In particular, the integration of automated code suggestions into the coding process is not transparent and interactive. In this work, we present Cody, a system for semi-automated qualitative coding that suggests codes based on human-defined coding rules and supervised machine learning (ML). Suggestions and rules can be revised iteratively by users in a lean interface that provides explanations for code suggestions. In a preliminary evaluation, 42% of all documents could be coded automatically based on code rules. Cody is the first coding system to allow users to define query-style code rules in combination with supervised ML. Thereby, users can extend manual annotations to unseen data to improve coding speed and quality

    Knowledge-based Transfer Learning Explanation

    Get PDF
    Machine learning explanation can significantly boost machine learning's application in decision making, but the usability of current methods is limited in human-centric explanation, especially for transfer learning, an important machine learning branch that aims at utilizing knowledge from one learning domain (i.e., a pair of dataset and prediction task) to enhance prediction model training in another learning domain. In this paper, we propose an ontology-based approach for human-centric explanation of transfer learning. Three kinds of knowledge-based explanatory evidence, with different granularities, including general factors, particular narrators and core contexts are first proposed and then inferred with both local ontologies and external knowledge bases. The evaluation with US flight data and DBpedia has presented their confidence and availability in explaining the transferability of feature representation in flight departure delay forecasting.Comment: Accepted by International Conference on Principles of Knowledge Representation and Reasoning, 201

    Towards a model- and data-focused taxonomy of XAI systems

    Get PDF
    Explainable Artificial Intelligence (XAI) is currently an important topic for the application of Machine Learning (ML) in high-stakes decision scenarios. Related research focuses on evaluating ML algorithms in terms of interpretability. However, providing a human understandable explanation of an intelligent system does not only relate to the used ML algorithm. The data and features used also have a considerable impact on interpretability. In this paper, we develop a taxonomy for describing XAI systems based on aspects about the algorithm and data. The proposed taxonomy gives researchers and practitioners opportunities to describe and evaluate current XAI systems with respect to interpretability and guides the future development of this class of systems

    A Communicative Action Framework for Discourse Strategies for AI-based Systems: The MetTrains Application Case

    Get PDF
    Increasing attention is being paid to the challenges of how artificial intelligence (AI)-based systems offer explanations to users. Explanation capabilities developed for older logic-based systems still have relevance, but new thinking is needed in designing explanations and other discourse strategies for new forms of AI that include machine learning. In this work-in-progress paper we show how a communicative action design framework can be used to design an AI-based system’s interface to achieve desired goals. The applicability of the framework is demonstrated with an interface for an intelligent video surveillance system for reducing railway suicide. The communicative action framework is an important step in theory development for human-computer interaction with AI as used in the information systems domain

    Explaining Data-Driven Decisions made by AI Systems: The Counterfactual Approach

    Full text link
    We examine counterfactual explanations for explaining the decisions made by model-based AI systems. The counterfactual approach we consider defines an explanation as a set of the system's data inputs that causally drives the decision (i.e., changing the inputs in the set changes the decision) and is irreducible (i.e., changing any subset of the inputs does not change the decision). We (1) demonstrate how this framework may be used to provide explanations for decisions made by general, data-driven AI systems that may incorporate features with arbitrary data types and multiple predictive models, and (2) propose a heuristic procedure to find the most useful explanations depending on the context. We then contrast counterfactual explanations with methods that explain model predictions by weighting features according to their importance (e.g., SHAP, LIME) and present two fundamental reasons why we should carefully consider whether importance-weight explanations are well-suited to explain system decisions. Specifically, we show that (i) features that have a large importance weight for a model prediction may not affect the corresponding decision, and (ii) importance weights are insufficient to communicate whether and how features influence decisions. We demonstrate this with several concise examples and three detailed case studies that compare the counterfactual approach with SHAP to illustrate various conditions under which counterfactual explanations explain data-driven decisions better than importance weights
    • …
    corecore