670 research outputs found

    Logic-Based Explainability in Machine Learning

    Full text link
    The last decade witnessed an ever-increasing stream of successes in Machine Learning (ML). These successes offer clear evidence that ML is bound to become pervasive in a wide range of practical uses, including many that directly affect humans. Unfortunately, the operation of the most successful ML models is incomprehensible for human decision makers. As a result, the use of ML models, especially in high-risk and safety-critical settings is not without concern. In recent years, there have been efforts on devising approaches for explaining ML models. Most of these efforts have focused on so-called model-agnostic approaches. However, all model-agnostic and related approaches offer no guarantees of rigor, hence being referred to as non-formal. For example, such non-formal explanations can be consistent with different predictions, which renders them useless in practice. This paper overviews the ongoing research efforts on computing rigorous model-based explanations of ML models; these being referred to as formal explanations. These efforts encompass a variety of topics, that include the actual definitions of explanations, the characterization of the complexity of computing explanations, the currently best logical encodings for reasoning about different ML models, and also how to make explanations interpretable for human decision makers, among others

    On Tackling Explanation Redundancy in Decision Trees

    Full text link
    Decision trees (DTs) epitomize the ideal of interpretability of machine learning (ML) models. The interpretability of decision trees motivates explainability approaches by so-called intrinsic interpretability, and it is at the core of recent proposals for applying interpretable ML models in high-risk applications. The belief in DT interpretability is justified by the fact that explanations for DT predictions are generally expected to be succinct. Indeed, in the case of DTs, explanations correspond to DT paths. Since decision trees are ideally shallow, and so paths contain far fewer features than the total number of features, explanations in DTs are expected to be succinct, and hence interpretable. This paper offers both theoretical and experimental arguments demonstrating that, as long as interpretability of decision trees equates with succinctness of explanations, then decision trees ought not be deemed interpretable. The paper introduces logically rigorous path explanations and path explanation redundancy, and proves that there exist functions for which decision trees must exhibit paths with arbitrarily large explanation redundancy. The paper also proves that only a very restricted class of functions can be represented with DTs that exhibit no explanation redundancy. In addition, the paper includes experimental results substantiating that path explanation redundancy is observed ubiquitously in decision trees, including those obtained using different tree learning algorithms, but also in a wide range of publicly available decision trees. The paper also proposes polynomial-time algorithms for eliminating path explanation redundancy, which in practice require negligible time to compute. Thus, these algorithms serve to indirectly attain irreducible, and so succinct, explanations for decision trees

    Certifying Correctness for Combinatorial Algorithms : by Using Pseudo-Boolean Reasoning

    Get PDF
    Over the last decades, dramatic improvements in combinatorialoptimisation algorithms have significantly impacted artificialintelligence, operations research, and other areas. These advances,however, are achieved through highly sophisticated algorithms that aredifficult to verify and prone to implementation errors that can causeincorrect results. A promising approach to detect wrong results is touse certifying algorithms that produce not only the desired output butalso a certificate or proof of correctness of the output. An externaltool can then verify the proof to determine that the given answer isvalid. In the Boolean satisfiability (SAT) community, this concept iswell established in the form of proof logging, which has become thestandard solution for generating trustworthy outputs. The problem isthat there are still some SAT solving techniques for which prooflogging is challenging and not yet used in practice. Additionally,there are many formalisms more expressive than SAT, such as constraintprogramming, various graph problems and maximum satisfiability(MaxSAT), for which efficient proof logging is out of reach forstate-of-the-art techniques.This work develops a new proof system building on the cutting planesproof system and operating on pseudo-Boolean constraints (0-1 linearinequalities). We explain how such machine-verifiable proofs can becreated for various problems, including parity reasoning, symmetry anddominance breaking, constraint programming, subgraph isomorphism andmaximum common subgraph problems, and pseudo-Boolean problems. Weimplement and evaluate the resulting algorithms and a verifier for theproof format, demonstrating that the approach is practical for a widerange of problems. We are optimistic that the proposed proof system issuitable for designing certifying variants of algorithms inpseudo-Boolean optimisation, MaxSAT and beyond

    Towards Robust Artificial Intelligence Systems

    Get PDF
    Adoption of deep neural networks (DNNs) into safety-critical and high-assurance systems has been hindered by the inability of DNNs to handle adversarial and out-of-distribution input. State-of-the-art DNNs misclassify adversarial input and give high confidence output for out-of-distribution input. We attempt to solve this problem by employing two approaches, first, by detecting adversarial input and, second, by developing a confidence metric that can indicate when a DNN system has reached its limits and is not performing to the desired specifications. The effectiveness of our method at detecting adversarial input is demonstrated against the popular DeepFool adversarial image generation method. On a benchmark of 50,000 randomly chosen ImageNet adversarial images generated for CaffeNet and GoogLeNet DNNs, our method can recover the correct label with 95.76% and 97.43% accuracy, respectively. The proposed attribution-based confidence (ABC) metric utilizes attributions used to explain DNN output to characterize whether an output corresponding to an input to the DNN can be trusted. The attribution based approach removes the need to store training or test data or to train an ensemble of models to obtain confidence scores. Hence, the ABC metric can be used when only the trained DNN is available during inference. We test the effectiveness of the ABC metric against both adversarial and out-of-distribution input. We experimental demonstrate that the ABC metric is high for ImageNet input and low for adversarial input generated by FGSM, PGD, DeepFool, CW, and adversarial patch methods. For a DNN trained on MNIST images, ABC metric is high for in-distribution MNIST input and low for out-of-distribution Fashion-MNIST and notMNIST input
    • …
    corecore