100 research outputs found

    Metric Learning in Histopathological Image Classification: Opening the Black Box

    Get PDF
    The application of machine learning techniques to histopathology images enables advances in the field, providing valuable tools that can speed up and facilitate the diagnosis process. The classification of these images is a relevant aid for physicians who have to process a large number of images in long and repetitive tasks. This work proposes the adoption of metric learning that, beyond the task of classifying images, can provide additional information able to support the decision of the classification system. In particular, triplet networks have been employed to create a representation in the embedding space that gathers together images of the same class while tending to separate images with different labels. The obtained representation shows an evident separation of the classes with the possibility of evaluating the similarity and the dissimilarity among input images according to distance criteria. The model has been tested on the BreakHis dataset, a reference and largely used dataset that collects breast cancer images with eight pathology labels and four magnification levels. Our proposed classification model achieves relevant performance on the patient level, with the advantage of providing interpretable information for the obtained results, which represent a specific feature missed by the all the recent methodologies proposed for the same purpose

    Explainable artificial intelligence (XAI) in deep learning-based medical image analysis

    Full text link
    With an increase in deep learning-based methods, the call for explainability of such methods grows, especially in high-stakes decision making areas such as medical image analysis. This survey presents an overview of eXplainable Artificial Intelligence (XAI) used in deep learning-based medical image analysis. A framework of XAI criteria is introduced to classify deep learning-based medical image analysis methods. Papers on XAI techniques in medical image analysis are then surveyed and categorized according to the framework and according to anatomical location. The paper concludes with an outlook of future opportunities for XAI in medical image analysis.Comment: Submitted for publication. Comments welcome by email to first autho

    Breast cancer detection using machine learning approaches: a comparative study

    Get PDF
    As the cause of the breast cancer disease has not yet clearly identified and a method to prevent its occurrence has not yet been developed, its early detection has a significant role in enhancing survival rate. In fact, artificial intelligent approaches have been playing an important role to enhance the diagnosis process of breast cancer. This work has selected eight classification models that are mostly used to predict breast cancer to be under investigation. These classifiers include single and ensemble classifiers. A trusted dataset has been enhanced by applying five different feature selection methods to pick up only weighted features and to neglect others. Accordingly, a dataset of only 17 features has been developed. Based on our experimental work, three classifiers, multi-layer perceptron (MLP), support vector machine (SVM) and stack are competing with each other by attaining high classification accuracy compared to others. However, SVM is ranked on the top by obtaining an accuracy of 97.7% with classification errors of 0.029 false negative (FN) and 0.019 false positive (FP). Therefore, it is noteworthy to mention that SVM is the best classifier and it outperforms even the stack classier

    A survey on artificial intelligence in histopathology image analysis

    Get PDF
    The increasing adoption of the whole slide image (WSI) technology in histopathology has dramatically transformed pathologists' workflow and allowed the use of computer systems in histopathology analysis. Extensive research in Artificial Intelligence (AI) with a huge progress has been conducted resulting in efficient, effective, and robust algorithms for several applications including cancer diagnosis, prognosis, and treatment. These algorithms offer highly accurate predictions but lack transparency, understandability, and actionability. Thus, explainable artificial intelligence (XAI) techniques are needed not only to understand the mechanism behind the decisions made by AI methods and increase user trust but also to broaden the use of AI algorithms in the clinical setting. From the survey of over 150 papers, we explore different AI algorithms that have been applied and contributed to the histopathology image analysis workflow. We first address the workflow of the histopathological process. We present an overview of various learning-based, XAI, and actionable techniques relevant to deep learning methods in histopathological imaging. We also address the evaluation of XAI methods and the need to ensure their reliability on the field

    Application of Machine Learning in Healthcare and Medicine: A Review

    Get PDF
    This extensive literature review investigates the integration of Machine Learning (ML) into the healthcare sector, uncovering its potential, challenges, and strategic resolutions. The main objective is to comprehensively explore how ML is incorporated into medical practices, demonstrate its impact, and provide relevant solutions. The research motivation stems from the necessity to comprehend the convergence of ML and healthcare services, given its intricate implications. Through meticulous analysis of existing research, this method elucidates the broad spectrum of ML applications in disease prediction and personalized treatment. The research's precision lies in dissecting methodologies, scrutinizing studies, and extrapolating critical insights. The article establishes that ML has succeeded in various aspects of medical care. In certain studies, ML algorithms, especially Convolutional Neural Networks (CNNs), have achieved high accuracy in diagnosing diseases such as lung cancer, colorectal cancer, brain tumors, and breast tumors. Apart from CNNs, other algorithms like SVM, RF, k-NN, and DT have also proven effective. Evaluations based on accuracy and F1-score indicate satisfactory results, with some studies exceeding 90% accuracy. This principal finding underscores the impressive accuracy of ML algorithms in diagnosing diverse medical conditions. This outcome signifies the transformative potential of ML in reshaping conventional diagnostic techniques. Discussions revolve around challenges like data quality, security risks, potential misinterpretations, and obstacles in integrating ML into clinical realms. To mitigate these, multifaceted solutions are proposed, encompassing standardized data formats, robust encryption, model interpretation, clinician training, and stakeholder collaboration

    xPath: Human-AI Diagnosis in Pathology with Multi-Criteria Analyses and Explanation by Hierarchically Traceable Evidence

    Full text link
    Data-driven AI promises support for pathologists to discover sparse tumor patterns in high-resolution histological images. However, from a pathologist's point of view, existing AI suffers from three limitations: (i) a lack of comprehensiveness where most AI algorithms only rely on a single criterion; (ii) a lack of explainability where AI models tend to work as 'black boxes' with little transparency; and (iii) a lack of integrability where it is unclear how AI can become part of pathologists' existing workflow. Based on a formative study with pathologists, we propose two designs for a human-AI collaborative tool: (i) presenting joint analyses of multiple criteria at the top level while (ii) revealing hierarchically traceable evidence on-demand to explain each criterion. We instantiate such designs in xPath -- a brain tumor grading tool where a pathologist can follow a top-down workflow to oversee AI's findings. We conducted a technical evaluation and work sessions with twelve medical professionals in pathology across three medical centers. We report quantitative and qualitative feedback, discuss recurring themes on how our participants interacted with xPath, and provide initial insights for future physician-AI collaborative tools.Comment: 31 pages, 11 figure

    Phenotyping the histopathological subtypes of non-small-cell lung carcinoma: how beneficial is radiomics?

    Get PDF
    The aim of this study was to investigate the usefulness of radiomics in the absence of well-defined standard guidelines. Specifically, we extracted radiomics features from multicenter computed tomography (CT) images to differentiate between the four histopathological subtypes of non-small-cell lung carcinoma (NSCLC). In addition, the results that varied with the radiomics model were compared. We investigated the presence of the batch effects and the impact of feature harmonization on the models' performance. Moreover, the question on how the training dataset composition influenced the selected feature subsets and, consequently, the model's performance was also investigated. Therefore, through combining data from the two publicly available datasets, this study involves a total of 152 squamous cell carcinoma (SCC), 106 large cell carcinoma (LCC), 150 adenocarcinoma (ADC), and 58 no other specified (NOS). Through the matRadiomics tool, which is an example of Image Biomarker Standardization Initiative (IBSI) compliant software, 1781 radiomics features were extracted from each of the malignant lesions that were identified in CT images. After batch analysis and feature harmonization, which were based on the ComBat tool and were integrated in matRadiomics, the datasets (the harmonized and the non-harmonized) were given as an input to a machine learning modeling pipeline. The following steps were articulated: (i) training-set/test-set splitting (80/20); (ii) a Kruskal-Wallis analysis and LASSO linear regression for the feature selection; (iii) model training; (iv) a model validation and hyperparameter optimization; and (v) model testing. Model optimization consisted of a 5-fold cross-validated Bayesian optimization, repeated ten times (inner loop). The whole pipeline was repeated 10 times (outer loop) with six different machine learning classification algorithms. Moreover, the stability of the feature selection was evaluated. Results showed that the batch effects were present even if the voxels were resampled to an isotropic form and whether feature harmonization correctly removed them, even though the models' performances decreased. Moreover, the results showed that a low accuracy (61.41%) was reached when differentiating between the four subtypes, even though a high average area under curve (AUC) was reached (0.831). Further, a NOS subtype was classified as almost completely correct (true positive rate similar to 90%). The accuracy increased (77.25%) when only the SCC and ADC subtypes were considered, as well as when a high AUC (0.821) was obtained-although harmonization decreased the accuracy to 58%. Moreover, the features that contributed the most to models' performance were those extracted from wavelet decomposed and Laplacian of Gaussian (LoG) filtered images and they belonged to the texture feature class.. In conclusion, we showed that our multicenter data were affected by batch effects, that they could significantly alter the models' performance, and that feature harmonization correctly removed them. Although wavelet features seemed to be the most informative features, an absolute subset could not be identified since it changed depending on the training/testing splitting. Moreover, performance was influenced by the chosen dataset and by the machine learning methods, which could reach a high accuracy in binary classification tasks, but could underperform in multiclass problems.It is, therefore, essential that the scientific community propose a more systematic radiomics approach, focusing on multicenter studies, with clear and solid guidelines to facilitate the translation of radiomics to clinical practice
    • …
    corecore