3,797 research outputs found

    The Pragmatic Turn in Explainable Artificial Intelligence (XAI)

    Get PDF
    In this paper I argue that the search for explainable models and interpretable decisions in AI must be reformulated in terms of the broader project of offering a pragmatic and naturalistic account of understanding in AI. Intuitively, the purpose of providing an explanation of a model or a decision is to make it understandable to its stakeholders. But without a previous grasp of what it means to say that an agent understands a model or a decision, the explanatory strategies will lack a well-defined goal. Aside from providing a clearer objective for XAI, focusing on understanding also allows us to relax the factivity condition on explanation, which is impossible to fulfill in many machine learning models, and to focus instead on the pragmatic conditions that determine the best fit between a model and the methods and devices deployed to understand it. After an examination of the different types of understanding discussed in the philosophical and psychological literature, I conclude that interpretative or approximation models not only provide the best way to achieve the objectual understanding of a machine learning model, but are also a necessary condition to achieve post hoc interpretability. This conclusion is partly based on the shortcomings of the purely functionalist approach to post hoc interpretability that seems to be predominant in most recent literature

    Explainability in Practice: Estimating Electrification Rates from Mobile Phone Data in Senegal

    Full text link
    Explainable artificial intelligence (XAI) provides explanations for not interpretable machine learning (ML) models. While many technical approaches exist, there is a lack of validation of these techniques on real-world datasets. In this work, we present a use-case of XAI: an ML model which is trained to estimate electrification rates based on mobile phone data in Senegal. The data originate from the Data for Development challenge by Orange in 2014/15. We apply two model-agnostic, local explanation techniques and find that while the model can be verified, it is biased with respect to the population density. We conclude our paper by pointing to the two main challenges we encountered during our work: data processing and model design that might be restricted by currently available XAI methods, and the importance of domain knowledge to interpret explanations.Comment: The 1st World Conference on eXplainable Artificial Intelligence (xAI 2023

    eXplainable Artificial Intelligence (XAI) in aging clock models

    Full text link
    eXplainable Artificial Intelligence (XAI) is a rapidly progressing field of machine learning, aiming to unravel the predictions of complex models. XAI is especially required in sensitive applications, e.g. in health care, when diagnosis, recommendations and treatment choices might rely on the decisions made by artificial intelligence systems. AI approaches have become widely used in aging research as well, in particular, in developing biological clock models and identifying biomarkers of aging and age-related diseases. However, the potential of XAI here awaits to be fully appreciated. We discuss the application of XAI for developing the "aging clocks" and present a comprehensive analysis of the literature categorized by the focus on particular physiological systems

    Measuring Perceived Trust in XAI-Assisted Decision-Making by Eliciting a Mental Model

    Full text link
    This empirical study proposes a novel methodology to measure users' perceived trust in an Explainable Artificial Intelligence (XAI) model. To do so, users' mental models are elicited using Fuzzy Cognitive Maps (FCMs). First, we exploit an interpretable Machine Learning (ML) model to classify suspected COVID-19 patients into positive or negative cases. Then, Medical Experts' (MEs) conduct a diagnostic decision-making task based on their knowledge and then prediction and interpretations provided by the XAI model. In order to evaluate the impact of interpretations on perceived trust, explanation satisfaction attributes are rated by MEs through a survey. Then, they are considered as FCM's concepts to determine their influences on each other and, ultimately, on the perceived trust. Moreover, to consider MEs' mental subjectivity, fuzzy linguistic variables are used to determine the strength of influences. After reaching the steady state of FCMs, a quantified value is obtained to measure the perceived trust of each ME. The results show that the quantified values can determine whether MEs trust or distrust the XAI model. We analyze this behavior by comparing the quantified values with MEs' performance in completing diagnostic tasks.Comment: Accepted in IJCAI 2023 Workshop on Explainable Artificial Intelligence (XAI

    Strategies to exploit XAI to improve classification systems

    Full text link
    Explainable Artificial Intelligence (XAI) aims to provide insights into the decision-making process of AI models, allowing users to understand their results beyond their decisions. A significant goal of XAI is to improve the performance of AI models by providing explanations for their decision-making processes. However, most XAI literature focuses on how to explain an AI system, while less attention has been given to how XAI methods can be exploited to improve an AI system. In this work, a set of well-known XAI methods typically used with Machine Learning (ML) classification tasks are investigated to verify if they can be exploited, not just to provide explanations but also to improve the performance of the model itself. To this aim, two strategies to use the explanation to improve a classification system are reported and empirically evaluated on three datasets: Fashion-MNIST, CIFAR10, and STL10. Results suggest that explanations built by Integrated Gradients highlight input features that can be effectively used to improve classification performance.Comment: This work has been accepted to be presented to The 1st World Conference on eXplainable Artificial Intelligence (xAI 2023), July 26-28, 2023 - Lisboa, Portuga
    corecore