2,756 research outputs found

    CSPCR: Cloud Security, Privacy and Compliance Readiness - A Trustworthy Framework

    Get PDF
    The privacy, handling, management and security of information in a cloud environment are complex and tedious tasks to achieve. With minimum investment and reduced cost of operations an organization can avail and apply the benefits of cloud computing into its business. This computing paradigm is based upon a pay as per your usage model. Moreover, security, privacy, compliance, risk management and service level agreement are critical issues in cloud computing environment. In fact, there is dire need of a model which can tackle and handle all the security and privacy issues. Therefore, we suggest a CSPCR model for evaluating the preparation of an organization to handle or to counter the threats, hazards in cloud computing environment. CSPCR discusses rules and regulations which are considered as pre-requisites in migrating or shifting to cloud computing services

    Digital forensic readiness intelligence crime repository

    Get PDF
    It may not always be possible to conduct a digital (forensic) investigation post-event if there is no process in place to preserve potential digital evidence. This study posits the importance of digital forensic readiness, or forensic-by-design, and presents an approach that can be used to construct a Digital Forensic Readiness Intelligence Repository (DFRIR). Based on the concept of knowledge sharing, the authors leverage this premise to suggest an intelligence repository. Such a repository can be used to cross-reference potential digital evidence (PDE) sources that may help digital investigators during the process. This approach employs a technique of capturing PDE from different sources and creating a DFR repository that can be able to be shared across diverse jurisdictions among digital forensic experts and law enforcement agencies (LEAs), in the form of intelligence. To validate the approach, the study has employed a qualitative approach based on a number of metrics and an analysis of experts\u27 opinion has been incorporated. The DFRIR seeks to maximize the collection of PDE, and reducing the time needed to conduct forensic investigation (e.g., by reducing the time for learning). This study then explains how such an approach can be employed in conjunction with ISO/IEC 27043: 2015

    Ontology‐driven perspective of CFRaaS

    Get PDF
    A Cloud Forensic Readiness as a Service (CFRaaS) model allows an environment to preemptively accumulate relevant potential digital evidence (PDE) which may be needed during a post‐event response process. The benefit of applying a CFRaaS model in a cloud environment, is that, it is designed to prevent the modification/tampering of the cloud architectures or the infrastructure during the reactive process, which if it could, may end up having far‐reaching implications. The authors of this article present the reactive process as a very costly exercise when the infrastructure must be reprogrammed every time the process is conducted. This may hamper successful investigation from the forensic experts and law enforcement agencies perspectives. The CFRaaS model, in its current state, has not been presented in a way that can help to classify or visualize the different types of potential evidence in all the cloud deployable models, and this may limit the expectations of what or how the required PDE may be collected. To address this problem, the article presents the CFRaaS from a holistic ontology‐driven perspective, which allows the forensic experts to be able to apply the CFRaaS based on its simplicity of the concepts, relationship or semantics between different form of potential evidence, as well as how the security of a digital environment being investigated could be upheld. The CFRaaS in this context follows a fundamental ontology engineering approach that is based on the classical Resource Description Framework. The proposed ontology‐driven approach to CFRaaS is, therefore, a knowledge‐base that uses layer‐dependencies, which could be an essential toolkit for digital forensic examiners and other stakeholders in cloud‐security. The implementation of this approach could further provide a platform to develop other knowledge base components for cloud forensics and security

    Calm before the storm: the challenges of cloud computing in digital forensics

    Get PDF
    Cloud computing is a rapidly evolving information technology (IT) phenomenon. Rather than procure, deploy and manage a physical IT infrastructure to host their software applications, organizations are increasingly deploying their infrastructure into remote, virtualized environments, often hosted and managed by third parties. This development has significant implications for digital forensic investigators, equipment vendors, law enforcement, as well as corporate compliance and audit departments (among others). Much of digital forensic practice assumes careful control and management of IT assets (particularly data storage) during the conduct of an investigation. This paper summarises the key aspects of cloud computing and analyses how established digital forensic procedures will be invalidated in this new environment. Several new research challenges addressing this changing context are also identified and discussed

    Are You Ready? A Proposed Framework For The Assessment Of Digital Forensic Readiness

    Get PDF
    This dissertation develops a framework to assess Digital Forensic Readiness (DFR) in organizations. DFR is the state of preparedness to obtain, understand, and present digital evidence when needed. This research collects indicators of digital forensic readiness from a systematic literature review. More than one thousand indicators were found and semantically analyzed to identify the dimensions to where they belong. These dimensions were subjected to a q-sort test and validated using association rules, producing a preliminary framework of DFR for practitioners. By classifying these indicators into dimensions, it was possible to distill them into 71 variables further classified into either extant or perceptual variables. Factor analysis was used to identify latent factors within the two groups of variables. A statistically-based framework to assess DFR is presented, wherein the extant indicators are used as a proxy of the real DFR status and the perceptual factors as the perception of this status

    Adding Digital Forensic Readiness as a Security Component to the IoT Domain

    Get PDF
    The unique identities of remote sensing, monitoring, self-actuating, self–adapting and self-configuring “things” in Internet of Things (IoT) has come out as fundamental building blocks for the development of “smart environments”. This experience has begun to be felt across different IoT-based domains like healthcare, surveillance, energy systems, home appliances, industrial machines, smart grids and smart cities. These developments have, however, brought about a more complex and heterogeneous environment which is slowly becoming a home to cyber attackers. Digital Forensic Readiness (DFR) though can be employed as a mechanism for maximizing the potential use of digital evidence while minimizing the cost of conducting a digital forensic investigation process in IoT environments in case of an incidence. The problem addressed in this paper, therefore, is that at the time of writing this paper, there still exist no IoT architectures that have a DFR capability that is able to attain incident preparedness across IoT environments as a mechanism of preparing for post-event response process. It is on this premise, that the authors are proposing an architecture for incorporating DFR to IoT domain for proper planning and preparing in the case of security incidents. It is paramount to note that the DFR mechanism in IoT discussed in this paper complies with ISO/IEC 27043: 2015, 27030:2012 and 27017: 2015 international standards. It is the authors’ opinion that the architecture is holistic and very significant in IoT forensics

    Cloud Forensics Investigations Relationship: A Model And Instrument

    Get PDF
    Cloud computing is one of the most important advances in computing in recent history. cybercrime has developed side by side and rapidly in recent years. Previous studies had confirmed the existing gap between cloud service providers (CSPs) and law enforcement agencies (LEAs), and LEAs cannot work without the cooperation of CSPs. Their relationship is influenced by legal, organisational and technical dimensions, which affect the investigations. Therefore, it is essential to enhance the cloud forensics relationship between LEAs and CSPs. This research addresses the need for a unified collaborative model to facilitate proper investigations and explore and evaluate existing different models involved in the relationship between Omani LEAs and local CSPs as a participant in investigations. Further, it proposes a validated research instrument that can be cloud forensics survey. It can also be used as an evaluation tool to identify, measure, and manage cloud forensic investigations

    Cloud Forensic: Issues, Challenges and Solution Models

    Full text link
    Cloud computing is a web-based utility model that is becoming popular every day with the emergence of 4th Industrial Revolution, therefore, cybercrimes that affect web-based systems are also relevant to cloud computing. In order to conduct a forensic investigation into a cyber-attack, it is necessary to identify and locate the source of the attack as soon as possible. Although significant study has been done in this domain on obstacles and its solutions, research on approaches and strategies is still in its development stage. There are barriers at every stage of cloud forensics, therefore, before we can come up with a comprehensive way to deal with these problems, we must first comprehend the cloud technology and its forensics environment. Although there are articles that are linked to cloud forensics, there is not yet a paper that accumulated the contemporary concerns and solutions related to cloud forensic. Throughout this chapter, we have looked at the cloud environment, as well as the threats and attacks that it may be subjected to. We have also looked at the approaches that cloud forensics may take, as well as the various frameworks and the practical challenges and limitations they may face when dealing with cloud forensic investigations.Comment: 23 pages; 6 figures; 4 tables. Book chapter of the book titled "A Practical Guide on Security and Privacy in Cyber Physical Systems Foundations, Applications and Limitations", World Scientific Series in Digital Forensics and Cybersecurit

    IoT Forensics Readiness - influencing factors

    Get PDF
    The Internet of Things (IoT) is increasingly becoming a part of people’s lives and is progressively revolutionizing our lives and businesses. From a Digital Forensics (DF) point of view, this connection turns an IoT environment into a valuable source of evidence containing diverse artifacts that could significantly aid DF investigations. Therefore, DF must adapt to the characteristics of IoT Forensics (IoTF). With the increasing deployment of IoT, organizations are compelled to revise their approaches to planning, developing, and implementing Information Technology (IT) security strategies. The IoT presents new business opportunities but also simultaneously creates various challenges related to cyber-attacks and their resolution. For optimal preparedness in the face of future incidents, companies should consider implementing Forensics Readiness (FR). This paper thus examines the factors that influence IoT-FR within organizations. By systematically analyzing research efforts from 2010 to 2023, we identified the following factors influencing IoT-FR: (1) Legal Aspect, (2) Standardization Approach, (3) Technological Resource and Technique, (4) Management Process and (5) Human Factor. Furthermore, these influencing factors are not only considered individually but also in terms of the dependencies between them. This results in the creation of a holistic model including the interdependencies and influences of the factors to provide a novel overview and enhance the integrated perspective on IoT-FR. The knowledge of factors influencing the integration of IoT-FR into organizations is valuable. It thus can be of enormous importance, as it can save time and money in the event of a subsequent incident. Additionally, alongside these factors, various challenges, techniques, models, and frameworks are highlighted to offer profound insights into the relatively novel subject of IoT-FR and to inspire future research
    • 

    corecore