30 research outputs found

    Analyzing Robustness of the Deep Reinforcement Learning Algorithm in Ramp Metering Applications Considering False Data Injection Attack and Defense

    Full text link
    Ramp metering is the act of controlling on-going vehicles to the highway mainlines. Decades of practices of ramp metering have proved that ramp metering can decrease total travel time, mitigate shockwaves, decrease rear-end collisions by smoothing the traffic interweaving process, etc. Besides traditional control algorithm like ALINEA, Deep Reinforcement Learning (DRL) algorithms have been introduced to build a finer control. However, two remaining challenges still hinder DRL from being implemented in the real world: (1) some assumptions of algorithms are hard to be matched in the real world; (2) the rich input states may make the model vulnerable to attacks and data noises. To investigate these issues, we propose a Deep Q-Learning algorithm using only loop detectors information as inputs in this study. Then, a set of False Data Injection attacks and random noise attack are designed to investigate the robustness of the model. The major benefit of the model is that it can be applied to almost any ramp metering sites regardless of the road geometries and layouts. Besides outcompeting the ALINEA method, the Deep Q-Learning method also shows a good robustness through training among very different demands and geometries. For example, during the testing case in I-24 near Murfreesboro, TN, the model shows its robustness as it still outperforms ALINEA algorithm under Fast Gradient Sign Method attacks. Unlike many previous studies, the model is trained and tested in completely different environments to show the capabilities of the model.Comment: 11 pages, 5 figure

    The State-of-the-art of Coordinated Ramp Control with Mixed Traffic Conditions

    Get PDF
    Ramp metering, a traditional traffic control strategy for conventional vehicles, has been widely deployed around the world since the 1960s. On the other hand, the last decade has witnessed significant advances in connected and automated vehicle (CAV) technology and its great potential for improving safety, mobility and environmental sustainability. Therefore, a large amount of research has been conducted on cooperative ramp merging for CAVs only. However, it is expected that the phase of mixed traffic, namely the coexistence of both human-driven vehicles and CAVs, would last for a long time. Since there is little research on the system-wide ramp control with mixed traffic conditions, the paper aims to close this gap by proposing an innovative system architecture and reviewing the state-of-the-art studies on the key components of the proposed system. These components include traffic state estimation, ramp metering, driving behavior modeling, and coordination of CAVs. All reviewed literature plot an extensive landscape for the proposed system-wide coordinated ramp control with mixed traffic conditions.Comment: 8 pages, 1 figure, IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE - ITSC 201

    Vision-Based Lane-Changing Behavior Detection Using Deep Residual Neural Network

    Get PDF
    Accurate lane localization and lane change detection are crucial in advanced driver assistance systems and autonomous driving systems for safer and more efficient trajectory planning. Conventional localization devices such as Global Positioning System only provide road-level resolution for car navigation, which is incompetent to assist in lane-level decision making. The state of art technique for lane localization is to use Light Detection and Ranging sensors to correct the global localization error and achieve centimeter-level accuracy, but the real-time implementation and popularization for LiDAR is still limited by its computational burden and current cost. As a cost-effective alternative, vision-based lane change detection has been highly regarded for affordable autonomous vehicles to support lane-level localization. A deep learning-based computer vision system is developed to detect the lane change behavior using the images captured by a front-view camera mounted on the vehicle and data from the inertial measurement unit for highway driving. Testing results on real-world driving data have shown that the proposed method is robust with real-time working ability and could achieve around 87% lane change detection accuracy. Compared to the average human reaction to visual stimuli, the proposed computer vision system works 9 times faster, which makes it capable of helping make life-saving decisions in time

    SHAIL: Safety-Aware Hierarchical Adversarial Imitation Learning for Autonomous Driving in Urban Environments

    Full text link
    Designing a safe and human-like decision-making system for an autonomous vehicle is a challenging task. Generative imitation learning is one possible approach for automating policy-building by leveraging both real-world and simulated decisions. Previous work that applies generative imitation learning to autonomous driving policies focuses on learning a low-level controller for simple settings. However, to scale to complex settings, many autonomous driving systems combine fixed, safe, optimization-based low-level controllers with high-level decision-making logic that selects the appropriate task and associated controller. In this paper, we attempt to bridge this gap in complexity by employing Safety-Aware Hierarchical Adversarial Imitation Learning (SHAIL), a method for learning a high-level policy that selects from a set of low-level controller instances in a way that imitates low-level driving data on-policy. We introduce an urban roundabout simulator that controls non-ego vehicles using real data from the Interaction dataset. We then show empirically that our approach can produce better behavior than previous approaches in driver imitation which have difficulty scaling to complex environments. Our implementation is available at https://github.com/sisl/InteractionImitation
    corecore