242,907 research outputs found

    Sparse Matrix-based Random Projection for Classification

    Full text link
    As a typical dimensionality reduction technique, random projection can be simply implemented with linear projection, while maintaining the pairwise distances of high-dimensional data with high probability. Considering this technique is mainly exploited for the task of classification, this paper is developed to study the construction of random matrix from the viewpoint of feature selection, rather than of traditional distance preservation. This yields a somewhat surprising theoretical result, that is, the sparse random matrix with exactly one nonzero element per column, can present better feature selection performance than other more dense matrices, if the projection dimension is sufficiently large (namely, not much smaller than the number of feature elements); otherwise, it will perform comparably to others. For random projection, this theoretical result implies considerable improvement on both complexity and performance, which is widely confirmed with the classification experiments on both synthetic data and real data

    Bilinear Random Projections for Locality-Sensitive Binary Codes

    Full text link
    Locality-sensitive hashing (LSH) is a popular data-independent indexing method for approximate similarity search, where random projections followed by quantization hash the points from the database so as to ensure that the probability of collision is much higher for objects that are close to each other than for those that are far apart. Most of high-dimensional visual descriptors for images exhibit a natural matrix structure. When visual descriptors are represented by high-dimensional feature vectors and long binary codes are assigned, a random projection matrix requires expensive complexities in both space and time. In this paper we analyze a bilinear random projection method where feature matrices are transformed to binary codes by two smaller random projection matrices. We base our theoretical analysis on extending Raginsky and Lazebnik's result where random Fourier features are composed with random binary quantizers to form locality sensitive binary codes. To this end, we answer the following two questions: (1) whether a bilinear random projection also yields similarity-preserving binary codes; (2) whether a bilinear random projection yields performance gain or loss, compared to a large linear projection. Regarding the first question, we present upper and lower bounds on the expected Hamming distance between binary codes produced by bilinear random projections. In regards to the second question, we analyze the upper and lower bounds on covariance between two bits of binary codes, showing that the correlation between two bits is small. Numerical experiments on MNIST and Flickr45K datasets confirm the validity of our method.Comment: 11 pages, 23 figures, CVPR-201

    K-nearest Neighbor Search by Random Projection Forests

    Full text link
    K-nearest neighbor (kNN) search has wide applications in many areas, including data mining, machine learning, statistics and many applied domains. Inspired by the success of ensemble methods and the flexibility of tree-based methodology, we propose random projection forests (rpForests), for kNN search. rpForests finds kNNs by aggregating results from an ensemble of random projection trees with each constructed recursively through a series of carefully chosen random projections. rpForests achieves a remarkable accuracy in terms of fast decay in the missing rate of kNNs and that of discrepancy in the kNN distances. rpForests has a very low computational complexity. The ensemble nature of rpForests makes it easily run in parallel on multicore or clustered computers; the running time is expected to be nearly inversely proportional to the number of cores or machines. We give theoretical insights by showing the exponential decay of the probability that neighboring points would be separated by ensemble random projection trees when the ensemble size increases. Our theory can be used to refine the choice of random projections in the growth of trees, and experiments show that the effect is remarkable.Comment: 15 pages, 4 figures, 2018 IEEE Big Data Conferenc
    • …
    corecore