38,968 research outputs found

    Multiobjective Reinforcement Learning for Reconfigurable Adaptive Optimal Control of Manufacturing Processes

    Full text link
    In industrial applications of adaptive optimal control often multiple contrary objectives have to be considered. The weights (relative importance) of the objectives are often not known during the design of the control and can change with changing production conditions and requirements. In this work a novel model-free multiobjective reinforcement learning approach for adaptive optimal control of manufacturing processes is proposed. The approach enables sample-efficient learning in sequences of control configurations, given by particular objective weights.Comment: Conference, Preprint, 978-1-5386-5925-0/18/$31.00 \c{opyright} 2018 IEE

    Scaling Configuration of Energy Harvesting Sensors with Reinforcement Learning

    Full text link
    With the advent of the Internet of Things (IoT), an increasing number of energy harvesting methods are being used to supplement or supplant battery based sensors. Energy harvesting sensors need to be configured according to the application, hardware, and environmental conditions to maximize their usefulness. As of today, the configuration of sensors is either manual or heuristics based, requiring valuable domain expertise. Reinforcement learning (RL) is a promising approach to automate configuration and efficiently scale IoT deployments, but it is not yet adopted in practice. We propose solutions to bridge this gap: reduce the training phase of RL so that nodes are operational within a short time after deployment and reduce the computational requirements to scale to large deployments. We focus on configuration of the sampling rate of indoor solar panel based energy harvesting sensors. We created a simulator based on 3 months of data collected from 5 sensor nodes subject to different lighting conditions. Our simulation results show that RL can effectively learn energy availability patterns and configure the sampling rate of the sensor nodes to maximize the sensing data while ensuring that energy storage is not depleted. The nodes can be operational within the first day by using our methods. We show that it is possible to reduce the number of RL policies by using a single policy for nodes that share similar lighting conditions.Comment: 7 pages, 5 figure

    Towards Robust Deep Reinforcement Learning for Traffic Signal Control: Demand Surges, Incidents and Sensor Failures

    Full text link
    Reinforcement learning (RL) constitutes a promising solution for alleviating the problem of traffic congestion. In particular, deep RL algorithms have been shown to produce adaptive traffic signal controllers that outperform conventional systems. However, in order to be reliable in highly dynamic urban areas, such controllers need to be robust with the respect to a series of exogenous sources of uncertainty. In this paper, we develop an open-source callback-based framework for promoting the flexible evaluation of different deep RL configurations under a traffic simulation environment. With this framework, we investigate how deep RL-based adaptive traffic controllers perform under different scenarios, namely under demand surges caused by special events, capacity reductions from incidents and sensor failures. We extract several key insights for the development of robust deep RL algorithms for traffic control and propose concrete designs to mitigate the impact of the considered exogenous uncertainties.Comment: 8 page

    An Optimal Online Method of Selecting Source Policies for Reinforcement Learning

    Full text link
    Transfer learning significantly accelerates the reinforcement learning process by exploiting relevant knowledge from previous experiences. The problem of optimally selecting source policies during the learning process is of great importance yet challenging. There has been little theoretical analysis of this problem. In this paper, we develop an optimal online method to select source policies for reinforcement learning. This method formulates online source policy selection as a multi-armed bandit problem and augments Q-learning with policy reuse. We provide theoretical guarantees of the optimal selection process and convergence to the optimal policy. In addition, we conduct experiments on a grid-based robot navigation domain to demonstrate its efficiency and robustness by comparing to the state-of-the-art transfer learning method

    Probabilistically Safe Policy Transfer

    Full text link
    Although learning-based methods have great potential for robotics, one concern is that a robot that updates its parameters might cause large amounts of damage before it learns the optimal policy. We formalize the idea of safe learning in a probabilistic sense by defining an optimization problem: we desire to maximize the expected return while keeping the expected damage below a given safety limit. We study this optimization for the case of a robot manipulator with safety-based torque limits. We would like to ensure that the damage constraint is maintained at every step of the optimization and not just at convergence. To achieve this aim, we introduce a novel method which predicts how modifying the torque limit, as well as how updating the policy parameters, might affect the robot's safety. We show through a number of experiments that our approach allows the robot to improve its performance while ensuring that the expected damage constraint is not violated during the learning process
    • …
    corecore