1,906 research outputs found

    A kilobit hidden SNFS discrete logarithm computation

    Get PDF
    We perform a special number field sieve discrete logarithm computation in a 1024-bit prime field. To our knowledge, this is the first kilobit-sized discrete logarithm computation ever reported for prime fields. This computation took a little over two months of calendar time on an academic cluster using the open-source CADO-NFS software. Our chosen prime pp looks random, and p−−1p--1 has a 160-bit prime factor, in line with recommended parameters for the Digital Signature Algorithm. However, our p has been trapdoored in such a way that the special number field sieve can be used to compute discrete logarithms in F_p∗\mathbb{F}\_p^* , yet detecting that p has this trapdoor seems out of reach. Twenty-five years ago, there was considerable controversy around the possibility of back-doored parameters for DSA. Our computations show that trapdoored primes are entirely feasible with current computing technology. We also describe special number field sieve discrete log computations carried out for multiple weak primes found in use in the wild. As can be expected from a trapdoor mechanism which we say is hard to detect, our research did not reveal any trapdoored prime in wide use. The only way for a user to defend against a hypothetical trapdoor of this kind is to require verifiably random primes

    Practical improvements to class group and regulator computation of real quadratic fields

    Get PDF
    We present improvements to the index-calculus algorithm for the computation of the ideal class group and regulator of a real quadratic field. Our improvements consist of applying the double large prime strategy, an improved structured Gaussian elimination strategy, and the use of Bernstein's batch smoothness algorithm. We achieve a significant speed-up and are able to compute the ideal class group structure and the regulator corresponding to a number field with a 110-decimal digit discriminant

    Security Estimates for Quadratic Field Based Cryptosystems

    Get PDF
    We describe implementations for solving the discrete logarithm problem in the class group of an imaginary quadratic field and in the infrastructure of a real quadratic field. The algorithms used incorporate improvements over previously-used algorithms, and extensive numerical results are presented demonstrating their efficiency. This data is used as the basis for extrapolations, used to provide recommendations for parameter sizes providing approximately the same level of security as block ciphers with 80,80, 112,112, 128,128, 192,192, and 256256-bit symmetric keys

    Improvements in the computation of ideal class groups of imaginary quadratic number fields

    Full text link
    We investigate improvements to the algorithm for the computation of ideal class groups described by Jacobson in the imaginary quadratic case. These improvements rely on the large prime strategy and a new method for performing the linear algebra phase. We achieve a significant speed-up and are able to compute ideal class groups with discriminants of 110 decimal digits in less than a week.Comment: 14 pages, 5 figure

    An invitation to quantum tomography

    Get PDF
    We describe quantum tomography as an inverse statistical problem and show how entropy methods can be used to study the behaviour of sieved maximum likelihood estimators. There remain many open problems, and a main purpose of the paper is to bring these to the attention of the statistical community.Comment: 19 pages, submitted to J. Royal Stat. Soc. B. Note added 31/05/04: a revised version with further statistical results but less mathematical details, and with co-author Luis Artiles, has been posted on arXiv as math.ST/040559

    Automatic Classification of Restricted Lattice Walks

    Get PDF
    We propose an experimental mathematics approach leading to the computer-driven discovery of various structural properties of general counting functions coming from enumeration of walks

    Testing isomorphism of graded algebras

    Get PDF
    We present a new algorithm to decide isomorphism between finite graded algebras. For a broad class of nilpotent Lie algebras, we demonstrate that it runs in time polynomial in the order of the input algebras. We introduce heuristics that often dramatically improve the performance of the algorithm and report on an implementation in Magma
    • …
    corecore