46 research outputs found

    Experimentation on the use of chromaticity features, local binary pattern and discrete cosine transform in colour texture analysis

    Get PDF
    This paper describes a method for colour texture analysis, which performs segmentation based on colour and texture information. The main goal of this approach is to examine the contribution of chromaticity features in the analysis of texture. Local binary pattern and discrete cosine transform are the techniques utilised as a tool to perform feature extraction. Segmentation is carried out based on an unsupervised texture segmentation method. The performance of the method is evaluated using dierent chromaticity features and also using the ROC curves. The results indicate that the inclusion of colour information improves the segmentation performance

    Colour Contrast Occurrence matrix: a vector and perceptual texture feature

    No full text
    International audienceTexture discrimination was the second more important task studied after colour perception and characterization.Nevertheless, few works explore the colour extension of these works and none for vectorial processing ofthis important visual information. In this work we propose a novel and vector processing for colour texturecharacterization, the color contrast occurrence matrix C2O. This new texture feature is based on the colourdierence assessment. To be link to the human perception, the colour dierence is expressed using a perceptualdistance expressed in CIELab and two angles characterizing the chromaticity and darker or lighter direction.Through this new attribute, we analyze the stability to changes in illumination, viewpoint and spectrum of thelight source in front of dierent texture image databases . Thanks to our construction, we avoid the main limit ofexisting texture features requiring an initial colour quantization or a binarization inside the texture construction.Keeping the small local contrast, we obtain a more accurate texture feature description explaining the obtainedresults. Then we carry out the construction of a features vector by occurrence quantization, keeping the initialideas of Julesz, Haralick and Ojala, for the classication purposes. The results show best correct classicationpercentages in databases that with important spatio-chromatic complexity as ALOT

    Multilayer Complex Network Descriptors for Color-Texture Characterization

    Full text link
    A new method based on complex networks is proposed for color-texture analysis. The proposal consists on modeling the image as a multilayer complex network where each color channel is a layer, and each pixel (in each color channel) is represented as a network vertex. The network dynamic evolution is accessed using a set of modeling parameters (radii and thresholds), and new characterization techniques are introduced to capt information regarding within and between color channel spatial interaction. An automatic and adaptive approach for threshold selection is also proposed. We conduct classification experiments on 5 well-known datasets: Vistex, Usptex, Outex13, CURet and MBT. Results among various literature methods are compared, including deep convolutional neural networks with pre-trained architectures. The proposed method presented the highest overall performance over the 5 datasets, with 97.7 of mean accuracy against 97.0 achieved by the ResNet convolutional neural network with 50 layers.Comment: 20 pages, 7 figures and 4 table

    Identifying Medicinal Plant Leaves Using Textures and Optimal Colour Spaces Channel

    Get PDF
    This paper presents an automated medicinal plant leaf identification system. The Colour Texture analysis of the leaves is done using the statistical, the Grey Tone Spatial Dependency Matrix(GTSDM) and the Local Binary Pattern(LBP) based features with 20 different colour spaces(RGB, XYZ, CMY, YIQ, YUV, YCbCrYC_{b}C_{r}, YES, UVWU^{*}V^{*}W^{*}, LabL^{*}a^{*}b^{*}, LuvL^{*}u^{*}v^{*}, lms, lαβl\alpha\beta, I1I2I3I_{1} I_{2} I_{3}, HSV, HSI, IHLS, IHS, TSL, LSLM and KLT). Classification of the medicinal plant is carried out with 70\% of the dataset in training set and 30\% in the test set. The classification performance is analysed with Stochastic Gradient Descent(SGD), kNearest Neighbour(kNN), Support Vector Machines based on Radial basis function kernel(SVM-RBF), Linear Discriminant Analysis(LDA) and Quadratic Discriminant Analysis(QDA) classifiers. Results of classification on a dataset of 250 leaf images belonging to five different species of plants show the identification rate of 98.7 \%. The results certainly show better identification due to the use of YUV, LabL^{*}a^{*}b^{*} and HSV colour spaces

    Optimizing automated characterization of liver fibrosis histological images by investigating color spaces at different resolutions

    Get PDF
    Texture analysis (TA) of histological images has recently received attention as an automated method of characterizing liver fibrosis. The colored staining methods used to identify different tissue components reveal various patterns that contribute in different ways to the digital texture of the image. A histological digital image can be represented with various color spaces. The approximation processes of pixel values that are carried out while converting between different color spaces can affect image texture and subsequently could influence the performance of TA. Conventional TA is carried out on grey scale images, which are a luminance approximation to the original RGB (Red, Green, and Blue) space. Currently, grey scale is considered sufficient for characterization of fibrosis but this may not be the case for sophisticated assessment of fibrosis or when resolution conditions vary. This paper investigates the accuracy of TA results on three color spaces, conventional grey scale, RGB, and Hue-Saturation-Intensity (HSI), at different resolutions. The results demonstrate that RGB is the most accurate in texture classification of liver images, producing better results, most notably at low resolution. Furthermore, the green channel, which is dominated by collagen fiber deposition, appears to provide most of the features for characterizing fibrosis images. The HSI space demonstrated a high percentage error for the majority of texture methods at all resolutions, suggesting that this space is insufficient for fibrosis characterization. The grey scale space produced good results at high resolution; however, errors increased as resolution decreased

    Colour Texture analysis

    Get PDF
    This chapter presents a novel and generic framework for image segmentation using a compound image descriptor that encompasses both colour and texture information in an adaptive fashion. The developed image segmentation method extracts the texture information using low-level image descriptors (such as the Local Binary Patterns (LBP)) and colour information by using colour space partitioning. The main advantage of this approach is the analysis of the textured images at a micro-level using the local distribution of the LBP values, and in the colour domain by analysing the local colour distribution obtained after colour segmentation. The use of the colour and texture information separately has proven to be inappropriate for natural images as they are generally heterogeneous with respect to colour and texture characteristics. Thus, the main problem is to use the colour and texture information in a joint descriptor that can adapt to the local properties of the image under analysis. We will review existing approaches to colour and texture analysis as well as illustrating how our approach can be successfully applied to a range of applications including the segmentation of natural images, medical imaging and product inspection
    corecore