27 research outputs found

    A PTAS for the Classical Ising Spin Glass Problem on the Chimera Graph Structure

    Full text link
    We present a polynomial time approximation scheme (PTAS) for the minimum value of the classical Ising Hamiltonian with linear terms on the Chimera graph structure as defined in the recent work of McGeoch and Wang. The result follows from a direct application of the techniques used by Bansal, Bravyi and Terhal who gave a PTAS for the same problem on planar and, in particular, grid graphs. We also show that on Chimera graphs, the trivial lower bound is within a constant factor of the optimum.Comment: 6 pages, corrected PTAS running tim

    Nonnegative/binary matrix factorization with a D-Wave quantum annealer

    Full text link
    D-Wave quantum annealers represent a novel computational architecture and have attracted significant interest, but have been used for few real-world computations. Machine learning has been identified as an area where quantum annealing may be useful. Here, we show that the D-Wave 2X can be effectively used as part of an unsupervised machine learning method. This method can be used to analyze large datasets. The D-Wave only limits the number of features that can be extracted from the dataset. We apply this method to learn the features from a set of facial images

    Evolutionary Approaches to Optimization Problems in Chimera Topologies

    Full text link
    Chimera graphs define the topology of one of the first commercially available quantum computers. A variety of optimization problems have been mapped to this topology to evaluate the behavior of quantum enhanced optimization heuristics in relation to other optimizers, being able to efficiently solve problems classically to use them as benchmarks for quantum machines. In this paper we investigate for the first time the use of Evolutionary Algorithms (EAs) on Ising spin glass instances defined on the Chimera topology. Three genetic algorithms (GAs) and three estimation of distribution algorithms (EDAs) are evaluated over 10001000 hard instances of the Ising spin glass constructed from Sidon sets. We focus on determining whether the information about the topology of the graph can be used to improve the results of EAs and on identifying the characteristics of the Ising instances that influence the success rate of GAs and EDAs.Comment: 8 pages, 5 figures, 3 table
    corecore