235 research outputs found

    Proactive Received Power Prediction Using Machine Learning and Depth Images for mmWave Networks

    Full text link
    This study demonstrates the feasibility of the proactive received power prediction by leveraging spatiotemporal visual sensing information toward the reliable millimeter-wave (mmWave) networks. Since the received power on a mmWave link can attenuate aperiodically due to a human blockage, the long-term series of the future received power cannot be predicted by analyzing the received signals before the blockage occurs. We propose a novel mechanism that predicts a time series of the received power from the next moment to even several hundred milliseconds ahead. The key idea is to leverage the camera imagery and machine learning (ML). The time-sequential images can involve the spatial geometry and the mobility of obstacles representing the mmWave signal propagation. ML is used to build the prediction model from the dataset of sequential images labeled with the received power in several hundred milliseconds ahead of when each image is obtained. The simulation and experimental evaluations using IEEE 802.11ad devices and a depth camera show that the proposed mechanism employing convolutional LSTM predicted a time series of the received power in up to 500 ms ahead at an inference time of less than 3 ms with a root-mean-square error of 3.5 dB

    High speed 802.11ad wireless video streaming

    Get PDF
    The aim of this thesis is to investigate, both theoretically and experimentally, the capability of the IEEE 802.11ad device, the Wireless Gigabit Alliance known as WiGig operating in the 60 GHz band to handle rise in data traffic ubiquitous to high speed data transmission such as bulk data transfer, and wireless video streaming. According to Cisco and others, it is estimated that in 2020, internet video traffic will account for 82 % of all consumer internet traffic. This research evalu- ated the feasibility of the 60 GHz to provide minimum data rate of about 970 Mbps from the Ethernet link limited or clamped to 1 Gbps. This translated to 97 % effi- ciency with respect to the IEEE 802.11ad system performance. For the first time, the author proposed the enhancement of millimetre wave propagation through the use of specular reflection in non-line-of-sight environment, providing at least 94 % bandwidth utilization. Additional investigations result of the IEEE 802.11ad device in real live streaming of 4k ultra-high definition (UHD) video shows the feasibility of aggressive frequency reuse in the absence of co-channel interference. Moreover, using heuristic approach, this work compared materials absorption and signal reception at 60 GHz and the results gives better performance in contrast to the theoretical values. Finally, this thesis proposes a framework for the 802.11ad wireless H.264 video streaming over 60 GHz band. The work describes the potential and efficiency of WiGig device in streaming high definition (HD) video with high temporal index (TI) and 4k UHD video with no retransmission. Caching point established at the re-transmitter increase coverage and cache multimedia data. The results in this thesis shows the growing potential of millimeter wave technology, the WiGig for very high speed bulk data transfer, and live streaming video transmission

    Characterization of 802.11ad Under Various Channel Conditions

    Get PDF
    The latest Wi-Fi standard, IEEE 802.11ad, offers the most open and uncongested radio spectrum for wireless communication on the market today. The standard’s capacity has maximum utility in locations with dense network activity, such as apartment buildings, airports, and other heavily populated locations. Because the standard boasts the highest theoretical throughput of 7 Gbps for devices with native support, market adoption has largely relied on the enthusiasm of technology vanguards. To increase widespread interest, backward compatible Wi-Fi dongles were created to regenerate legacy devices. Although the MG360° Wi-Fi dongle platform detailed in this thesis showed a loss of 5 Gbps in theoretical network performance compared to native support, it gains portability across devices. The return of investment on these actions predicts a market growth of 7.4 billion USD by the year 2024. As the 802.11ad standard continues to evolve with time, the settings in which it is deployed will have profound effects on performance. This thesis evaluates 802.11ad network performance in terms of throughput, channel power, and their relationship in three different but typical environments. All experiments were examined through adaptive beamforming to discover the optimal multipath for signal interference. A multiuser domain, which is alternative to the current tri-band configuration available on the market, was simulated for exclusive 802.11ad usage. Parameters—serving as the degree of transmission,—and environmental reflectivity offered insights about the influence of the signal-to-noise (SNR) ratio in Wi-Fi communications. A polynomial empirical model assessed channel power and its relationship with distance. Extrapolation extended the polynomial model to help further explore the channel power and throughput relationship under adaptive beamforming

    Analysis and performance improvement of consumer-grade millimeter wave wireless networks

    Get PDF
    Millimeter-wave (mmWave) networks are one of the main key components in next cellular and WLANs (Wireless Local Area Networks). mmWave networks are capable of providing multi gigabit-per-second rates with very directional low-interference and high spatial reuse links. In 2013, the first 60 GHz wireless solution for WLAN appeared in the market. These were wireless docking stations under theWiGig protocol. Today, in 2019, 60 GHz communications have gained importance with the IEEE 802.11ad amendment with different products on the market, including routers, laptops and wireless Ethernet solutions. More importantly, mmWave networks are going to be used in next generation cellular networks, where smartphones will be using the 28 GHz band. For backbone links, 60 GHz communications have been proposed due to its higher directionality and unlicensed use. This thesis fits in this frame of constant development of themmWave bands to meet the needs of latency and throughput that will be necessary to support future communications. In this thesis, we first characterize the cost-effective design of COTS (commercial off-the-shelf) 60 GHz devices and later we improve their two main weaknesses, which are their low link distance and their non-ideal spatial reuse. It is critical to take into consideration the cost-effective design of COTS devices when designing networking mechanisms. This is why in this thesis we do the first-of-its-kind COTS analysis of 60 GHz devices, studying the D5000 WiGig Docking station and the TP-Link Talon IEEE 802.11ad router. We include static measurements such as the synthesized beam patterns of these devices or an analysis of the area-wide coverage that these devices can fulfill. We perform a spatial reuse analysis and study the performance of these devices under user mobility, showing how robust the link can be under user movement. We also study the feasibility of having flying mmWave links. We mount a 60 GHz COTS device into a drone and perform different measurement campaigns. In this first analysis, we see that these 60 GHz devices have a large performance gap for the achieved communication range as well as a very low spatial reuse. However, they are still suitable for low density WLANs and for next generation aerial micro cell stations. Seeing that these COTS devices are not as directional as literature suggests, we analyze how channels are not as frequency stable as expected due to the large amount of reflected signals. Ideally, frequency selective techniques could be used in these frequency selective channels in order to enlarge the range of these 60 GHz devices. To validate this, we measure real-world 60 GHz indoor channels with a bandwidth of 2 GHz and study their behavior with respect to techniques such as bitloading, subcarrier switch-off, and waterfilling. To this end, we consider a Orthogonal Frequency-Division Multiplexing (OFDM) channel as defined in the IEEE 802.11ad standard and show that in point of fact, these techniques are highly beneficial in mmWave networks allowing for a range extension of up to 50%, equivalent to power savings of up to 7 dB. In order to increase the very limited spatial reuse of these wireless networks, we propose a centralized system that allows the network to carry out the beam training process not only to maximize power but also taking into account other stations in order to minimize interference. This system is designed to work with unmodified clients. We implement and validate our system on commercial off-the-shelf IEEE 802.11ad hardware, achieving an average throughput gain of 24.67% for TCP traffic, and up to a twofold throughput gain in specific cases.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Andrés García Saavedra.- Secretario: Matilde Pilar Sánchez Fernández.- Vocal: Ljiljana Simi
    • …
    corecore