269 research outputs found

    The Effects of Prosthesis Inertial Properties on Prosthetic Knee Moment and Hip Energetics Required to Achieve Able-bodied Kinematics

    Get PDF
    There is a major need in the developing world for a low-cost prosthetic knee that enables users to walk with able-bodied kinematics and low energy expenditure. To efficiently design such a knee, the relationship between the inertial properties of a prosthetic leg and joint kinetics and energetics must be determined. In this paper, using inverse dynamics, the theoretical effects of varying the inertial properties of an above-knee prosthesis on the prosthetic knee moment, hip power, and absolute hip work required for walking with ablebodied kinematics were quantified. The effects of independently varying mass and moment of inertia of the prosthesis, as well as independently varying the masses of each prosthesis segment, were also compared. Decreasing prosthesis mass to 25% of physiological leg mass increased peak late-stance knee moment by 43% and decreased peak swing knee moment by 76%. In addition, it reduced peak stance hip power by 26%, average swing hip power by 76%, and absolute hip work by 22%. Decreasing upper leg mass to 25% of its physiological value reduced absolute hip work by just 2%, whereas decreasing lower leg and foot mass reduced work by up to 22%, with foot mass having the greater effect. Results are reported in the form of parametric illustrations that can be utilized by researchers, designers, and prosthetists. The methods and outcomes presented have the potential to improve prosthetic knee component selection, facilitate ablebodied kinematics, and reduce energy expenditure for users of low-cost, passive knees in developing countries, as well as for users of advanced active knees in developed countries.MIT Department of Physics Pappalardo Program (Fellowship)Massachusetts Institute of Technology. Public Service CenterMassachusetts Institute of Technology. Research Support CommitteeNational Science Foundation (U.S.). Graduate Research Fellowship (Grant 1122374)MIT Tata Center for Technology and Desig

    Design and Implementation of the Powered Self-Contained AMPRO Prostheses

    Get PDF
    This thesis presents a complete methodology for translating robotic walking to powered prostheses, and demonstrates this framework on two novel custom built powered prostheses, AMPRO. Motivated by methods that have successfully generated dynamically stable walking gaits on bipedal robots, reference human locomotion data is collected via Inertial Measurement Units (IMU) and stable walking gaits are generated using the framework of human-inspired optimization and control. Next two novel transfemoral protheses are designed and custom built based on the understanding obtained from the collection of human data and gait generation. For experimental realization, the IMUs are mounted on the healthy human leg to estimate human intention during walking on-line, and serves as the feedback interaction point between human and prosthesis. The end result is the experimental verification of the proposed methodology in achieving stable and robust locomotion on a powered prosthesis. Furthermore it is concluded that reducing the weight of AMPRO I, through the design of AMPRO II, improves the performance of the prosthesis and comfort of the human subject

    FAST USER ACTIVITY PHASE RECOGNITION FOR THE SAFETY OF TRANSFEMORAL PROSTHESIS CONTROL

    Get PDF
    In the process of creating powered transfemoral prostheses, one of the most important tasks is the provision of the user safety while walking. Experience shows that security depends not only on the mechanical strength of such devices, but also on the quality of their control systems, which, among other things, must ensure that latency and error rates of recognition are acceptable for each of the possible changes in gait. Incorrect or late recognition of the activity mode at best can lead to suboptimal assistance from the auxiliary device, and at worst - to loss of stability of the user with a subsequent fall. Loss of stability can also occur due to exceeding the critical time or critical errors of the activity phase recognition and the associated incorrect commands generated by the control system. In this paper, a method for quickly recognizing the phase of the user's activity based on the properties of Huā€™s moment invariants is substantiated. Its use in the intelligent control systems will minimize the critical errors that contribute to the loss of the user's equilibrium with the powered transfemoral prosthesis

    Ability of modal analysis to detect osseointegration of implants in transfemoral amputees : a physical model study

    Get PDF
    Owing to the successful use of non-invasive vibration analysis to monitor the progression of dental implant healing and stabilization, it is now being considered as a method to monitor femoral implants in transfemoral amputees. This study uses composite femur-implant physical models to investigate the ability of modal analysis to detect changes at the interface between the implant and bone simulating those that occur during osseointegration. Using electromagnetic shaker excitation, differences were detected in the resonant frequencies and mode shapes of the model when the implant fit in the bone was altered to simulate the two interface cases considered: firm and loose fixation. The study showed that it is beneficial to examine higher resonant frequencies and their mode shapes (rather than the fundamental frequency only) when assessing fixation. The influence of the model boundary conditions on the modal parameters was also demonstrated. Further work is required to more accurately model the mechanical changes occurring at the bone-implant interface in vivo, as well as further refinement of the model boundary conditions to appropriately represent the in vivo conditions. Nevertheless the ability to detect changes in the model dynamic properties demonstrates the potential of modal analysis in this application and warrants further investigation

    The effect of prefabricated wrist-hand orthoses on grip strength

    Get PDF
    Prefabricated wrist-hand orthoses (WHOs) are commonly prescribed to manage the functional deficit and compromised grip strength as a result of rheumatoid changes. It is thought that an orthosis which improves wrist extension, reduces synovitis and increases the mechanical advantage of the flexor muscles will improve hand function. Previous studies report an initial reduction in grip strength with WHO use which may increase following prolonged use. Using normal subjects, and thus in the absence of pain as a limiting factor, the impact of ten WHOs on grip strength was measured using a Jamar dynamometer. Tests were performed with and without WHOs by right-handed, female subjects, aged 20-50 years over a ten week period. During each test, a wrist goniometer and a forearm torsiometer were used to measure wrist joint position when maximum grip strength was achieved. The majority of participants achieved maximum grip strength with no orthosis at 30Ā° extension. All the orthoses reduced initial grip strength but surprisingly the restriction of wrist extension did not appear to contribute in a significant way to this. Reduction in grip must therefore also be attributable to WHO design characteristics or the quality of fit. The authors recognize the need for research into the long term effect of WHOs on grip strength. However if grip is initially adversely affected, patients may be unlikely to persevere with treatment thereby negating all therapeutic benefits. In studies investigating patient opinions on WHO use, it was a stable wrist rather than a stronger grip reported to have facilitated task performance. This may explain why orthoses that interfere with maximum grip strength can improve functional task performance. Therefore while it is important to measure grip strength, it is only one factor to be considered when evaluating the efficacy of WHOs

    Use of stance control knee-ankle-foot orthoses : a review of the literature

    Get PDF
    The use of stance control orthotic knee joints are becoming increasingly popular as unlike locked knee-ankle-foot orthoses, these joints allow the limb to swing freely in swing phase while providing stance phase stability, thus aiming to promote a more physiological and energy efficient gait. It is of paramount importance that all aspects of this technology is monitored and evaluated as the demand for evidence based practice and cost effective rehabilitation increases. A robust and thorough literature review was conducted to retrieve all articles which evaluated the use of stance control orthotic knee joints. All relevant databases were searched, including The Knowledge Network, ProQuest, Web of Knowledge, RECAL Legacy, PubMed and Engineering Village. Papers were selected for review if they addressed the use and effectiveness of commercially available stance control orthotic knee joints and included participant(s) trialling the SCKAFO. A total of 11 publications were reviewed and the following questions were developed and answered according to the best available evidence: 1. The effect SCKAFO (stance control knee-ankle-foot orthoses) systems have on kinetic and kinematic gait parameters 2. The effect SCKAFO systems have on the temporal and spatial parameters of gait 3. The effect SCKAFO systems have on the cardiopulmonary and metabolic cost of walking. 4. The effect SCKAFO systems have on muscle power/generation 5. Patientā€™s perceptions/ compliance of SCKAFO systems Although current research is limited and lacks in methodological quality the evidence available does, on a whole, indicate a positive benefit in the use of SCKAFOs. This is with respect to increased knee flexion during swing phase resulting in sufficient ground clearance, decreased compensatory movements to facilitate swing phase clearance and improved temporal and spatial gait parameters. With the right methodological approach, the benefits of using a SCKAFO system can be evidenced and the research more effectively converted into clinical practice

    The effect of prefabricated wrist-hand orthoses on performing activities of daily living

    Get PDF
    Wrist-hand orthoses (WHOs) are commonly prescribed to manage the functional deficit associated with the wrist as a result of rheumatoid changes. The common presentation of the wrist is one of flexion and radial deviation with ulnar deviation of the fingers. This wrist position Results in altered biomechanics compromising hand function during activities of daily living (ADL). A paucity of evidence exists which suggests that improvements in ADL with WHO use are very task specific. Using normal subjects, and thus in the absence of pain as a limiting factor, the impact of ten WHOs on performing five ADLs tasks was investigated. The tasks were selected to represent common grip patterns and tests were performed with and without WHOs by right-handed, females, aged 20-50 years over a ten week period. The time taken to complete each task was recorded and a wrist goniometer, elbow goniometer and a forearm torsiometer were used to measure joint motion. Results show that, although orthoses may restrict the motion required to perform a task, participants do not use the full range of motion which the orthoses permit. The altered wrist position measured may be attributable to a modified method of performing the task or to a necessary change in grip pattern, resulting in an increased time in task performance. The effect of WHO use on ADL is task specific and may initially impede function. This could have an effect on WHO compliance if there appears to be no immediate benefits. This orthotic effect may be related to restriction of wrist motion or an inability to achieve the necessary grip patterns due to the designs of the orthoses

    Deep Reinforcement Learning for Physics-Based Musculoskeletal Simulations of Healthy Subjects and Transfemoral Prosthesesā€™ Users During Normal Walking

    Get PDF
    This paper proposes to use deep reinforcement learning for the simulation of physics-based musculoskeletal models of both healthy subjects and transfemoral prosthesesā€™ users during normal level-ground walking. The deep reinforcement learning algorithm is based on the proximal policy optimization approach in combination with imitation learning to guarantee a natural walking gait while reducing the computational time of the training. Firstly, the optimization algorithm is implemented for the OpenSim model of a healthy subject and validated with experimental data from a public data-set. Afterwards, the optimization algorithm is implemented for the OpenSim model of a generic transfemoral prosthesisā€™ user, which has been obtained by reducing the number of muscles around the knee and ankle joints and, specifically, by keeping only the uniarticular ones. The model of the transfemoral prosthesisā€™ user shows a stable gait, with a forward dynamic comparable to the healthy subjectā€™s, yet using higher musclesā€™ forces. Even though the computed musclesā€™ forces could not be directly used as control inputs for muscle-like linear actuators due to their pattern, this study paves the way for using deep reinforcement learning for the design of the control architecture of transfemoral prostheses
    • ā€¦
    corecore