403 research outputs found

    Hydrodynamic Modelling for a Transportation System of Two Unmanned Underwater Vehicles: Semi-Empirical, Numerical and Experimental Analyses

    Get PDF
    Underwater transportation is an essential approach for scientific exploration, maritime construction and military operations. Determining the hydrodynamic coefficients for a complex underwater transportation system comprising multiple vehicles is challenging. Here, the suitability of a quick and less costly semi-empirical approach to obtain the hydrodynamic coefficients for a complex transportation system comprising two Unmanned Underwater Vehicles (UUVs) is investigated, where the interaction effects between UUVs are assumed to be negligible. The drag results were verified by Computational Fluid Dynamics (CFD) analysis at the steady state. The semi-empirical results agree with CFD in heave and sway; however, they were overpredicted in surge due to ignoring the wake effects. Furthermore, experiments were performed for the validation of the time-domain motion simulations with semi-empirical and CFD results. The simulations which were performed with the CFD drags were close to the experiments. The semi-empirical approach could be relied on once a correction parameter is included to account for the interactive effect between multiple UUVs. Overall, this work makes a contribution by deriving a semi-empirical approach for the dynamic and controlling system of dual UUVs, with CFD and experiments applied to ascertain its accuracy and potential improvement

    Theory And Design Issues Of Underwater Manipulator.

    Get PDF
    In this paper we discuss the theory and implementation issue that is faced by underwater manipulators designers

    Modelling and control of lightweight underwater vehicle-manipulator systems

    Get PDF
    This thesis studies the mathematical description and the low-level control structures for underwater robotic systems performing motion and interaction tasks. The main focus is on the study of lightweight underwater-vehicle manipulator systems. A description of the dynamic and hydrodynamic modelling of the underwater vehicle-manipulator system (UVMS) is presented and a study of the coupling effects between the vehicle and manipulator is given. Through simulation results it is shown that the vehicle’s capabilities are degraded by the motion of the manipulator, when it has a considerable mass with respect to the vehicle. Understanding the interaction effects between the two subsystems is beneficial in developing new control architectures that can improve the performance of the system. A control strategy is proposed for reducing the coupling effects between the two subsystems when motion tasks are required. The method is developed based on the mathematical model of the UVMS and the estimated interaction effects. Simulation results show the validity of the proposed control structure even in the presence of uncertainties in the dynamic model. The problem of autonomous interaction with the underwater environment is further addressed. The thesis proposes a parallel position/force control structure for lightweight underwater vehicle-manipulator systems. Two different strategies for integrating this control law on the vehicle-manipulator structure are proposed. The first strategy uses the parallel control law for the manipulator while a different control law, the Proportional Integral Limited control structure, is used for the vehicle. The second strategy treats the underwater vehicle-manipulator system as a single system and the parallel position/force law is used for the overall system. The low level parallel position/force control law is validated through practical experiments using the HDT-MK3-M electric manipulator. The Proportional Integral Limited control structure is tested using a 5 degrees-of-freedom underwater vehicle in a wave-tank facility. Furthermore, an adaptive tuning method based on interaction theory is proposed for adjusting the gains of the controller. The experimental results show that the method is advantageous as it decreases the complexity of the manual tuning otherwise required and reduces the energy consumption. The main objectives of this thesis are to understand and accurately represent the behaviour of an underwater vehiclemanipulator system, to evaluate this system when in contact with the environment and to design informed low-level control structures based on the observations made through the mathematical study of the system. The concepts presented in this thesis are not restricted to only vehicle-manipulator systems but can be applied to different other multibody robotic systems

    Modelling of robotic manipulators

    Get PDF
    This thesis explores the different aspects of robotic manipulator modelling and covers both the dynamic and the kinematic issues for the purpose of improving the overall manipulator accuracy. It is shown that the modelling should not stop at producing the model, but rather the model should be validated. The thesis presents a description of the modelling process and examines the three most important formulations for dynamic modelling. A comparison of their performance and ease of use is made, both for manual and computer assisted implementation. Three commercial computer modelling packages are also described and compared with regard to their performance and ease of use for robotic manipulator modelling. It is shown that some software development is required to make the packages easy to use for manipulator specific modelling. As part of this work, one such development was a programme written as a back end to AUTOLEV. This combination provides a powerful tool for dynamic modelling and simulation of manipulators. A more integrated computer aided engineering approach is also discussed through modelling a large industrial manipulator using a geometric modelling package along with another dynamic modelling and simulation program. This approach is very efficient in providing useful information which is difficult to otherwise obtain from direct measurements. The thesis emphasises validation as part of the modelling process. A model does not have to be an exact mathematical description of the manipulator, inclusive of all characteristics, but rather a valid description for the intended use. It is shown that a manipulator model can be split into several joint models and validation performed on each using a parameter estimation technique. It is also shown that friction parameter tuning produces acceptable parameter values for a valid model of a Puma 560 manipulator

    A Dynamic Manipulation Strategy for an Intervention Autonomous Underwater Vehicle

    Get PDF
    This paper presents the modelling and the control architecture of an Autonomous Underwater Vehicle for Intervention (I-AUV). Autonomous underwater manipulation with free-floating base is still an open topic of research, far from reaching an industrial product. Dynamic manipulation tasks, where relevant vehicle velocities are required during manipulation, over an additional challenge. In this paper, the accurate modelling of an I-AUV is described, not neglecting the interaction with the fluid. A grasp planning strategy is proposed and integrated in the control of the whole system. The performances of the I-AUV have been analysed by means of simulations of a dynamic manipulation task

    Hydrodynamic Coefficients for Various Postures of the Underwater Manipulator

    Get PDF
    The hydrodynamic coefficients of underwater manipulators constantly change during their operation. In this study, the hydrodynamic coefficients of an underwater manipulator were calculated using the finite volume method to better explain its hydrodynamic performance. The drag, lift, and moment coefficients and the Strouhal number of an underwater manipulator for different postures were investigated. The results indicated that in each motion range, the coefficients first increase and then decrease.  Meanwhile, when the attitude of the underwater manipulator is axis-symmetric or origin-symmetric, the hydrodynamic coefficients and the Strouhal number obtained are approximately the identical. The drag coefficient, lift coefficient and moment coefficient reach their maximum values of 3.59, 3.29, and 1.78 at angles of 30°, 150°, and 150°, respectively, with minimum values at 90°, 50° and -30°. Furthermore, the leading-edge shape of the underwater manipulator had a significant effect on the hydrodynamic coefficient. Maximum reductions of 44%, 25%, and 50.5% were obtained in the drag, lift, and moment coefficients, respectively, by comparing the semicircular leading edge with the right-angle leading edge. A maximum Strouhal number of 0.219 was obtained when the semicircular leading edge of the underwater manipulator was the upstream surface. This study will provide theoretical guidance to reveal the hydrodynamic performance of the underwater manipulators. It also serves as a reference for the structural design of the underwater manipulators

    Optimal control of the heave motion of marine cable subsea-unit systems

    Get PDF
    One of the key problems associated with subsea operations involving tethered subsea units is the motions of support vessels on the ocean surface which can be transmitted to the subsea unit through the cable and increase the tension. In this paper, a theoretical approach for heave compensation is developed. After proper modelling of each element of the system, which includes the cable/subsea-unit, the onboard winch, control theory is applied to design an optimal control law. Numerical simulations are carried out, and it is found that the proposed active control scheme appears to be a promising solution to the problem of heave compensation
    corecore