76 research outputs found

    Transmitting audio via fiber optics under nonlinear effects and optimized tuning parameters based on Co-simulation of matlab and optisystemTM

    Get PDF
    Limitations of conventional wires such as copper wires are causing dispersion and distortion of the message signal for long distances communication especially for the wide bandwidths. The ability of fiber optic to overcome this problem is making it a dominant transmission medium. Despite of this major positive attribute of optic fibers, there is still a downside for using the fiber optic communication; that is the nonlinearity problem especially at the very high frequency bandwidth. For the first time, a desigen of an audio signal is suggested and executed in MatLab with an integration with OptiSystemTM software to discuss and solve this issu. The audio signal is then transmitted in different shapes of modulation signals (NRZ, RZ & RC) for different distances (100 km & 75 km) via a fiber optic media to be received in a receiving part of the simulated system. Three tests are used to do so. The first is the Quality-factor (Q-Factor) against the received power, second test is eye diagram performance and finally is the measuring of the amplitude of output (received) signal for each modulation signal shape using the Oscilloscope Visualizer. The NZR modulation signal was found to be the best one of the three used signals’ types in all three tests. The Q-factor for NRZ pulse shape (=12) was higher than that for RZ (=10) and RC (=8) for a 100 km distance at the same received power level

    Detection and processing of phase modulated optical signals at 40 Gbit/s and beyond

    Get PDF
    This thesis addresses demodulation in direct detection systems and signal processing of high speed phase modulated signals in future all-optical wavelength division multiplexing (WDM) communication systems where differential phase shift keying (DPSK) or differential quadrature phase shift keying (DQPSK) are used to transport information. All-optical network functionalities -such as optical labeling, wavelength conversion and signal regeneration- are experimentally investigated. Direct detection of phase modulated signals requires phase-to-intensity modulation conversion in a demodulator at the receiver side. This is typically implemented in a one bit delay Mach-Zehnder interferometer (MZI). Two alternative ways of performing phase-to-intensity modulation conversion are presented. Successful demodulation of DPSK signals up to 40 Gbit/s is demonstrated using the proposed two devices. Optical labeling has been proposed as an efficient way to implement packet routing and forwarding functionalities in future IP-over-WDM networks. An in-band subcarrier multiplexing (SCM) labeled signal using 40 Gbit/s DSPK payload and 25 Mbit/s non return-to-zero(NRZ) SCM label, is successfully transmitted over 80 km post-compensated non-zero dispersion shifted fiber (NZDSF) span. Using orthogonal labeling, an amplitude shift keying (ASK)/DPSK labeled signal using 40 Gbit/s return-to-zero (RZ) payload and 2.5 Gbit/s DPSK label, is generated. WDM transmission and label swapping are demonstrated for such a signal. In future all-optical WDM networks, wavelength conversion is an essential functionality to provide wavelength flexibility and avoid wavelength blocking. Using a 50 m long highly nonlinear photonic crystal fiber (HNL-PCF), with a simple four-wave mixing (FWM) scheme, wavelength conversion of single channel and multi-channel high-speed DPSK signals is presented. Wavelength conversion of an 80 Gbit/s RZ-DPSK-ASK signal generated by combining different modulation formats is also reported. Amplitude distortion accumulated over transmission spans will eventually be converted into nonlinear phase noise, and consequently degrade the performance of systems making use of RZ-DPSK format. All-optical signal regeneration avoiding O-E-O conversion is desired to improve signal quality in ultra long-haul transmission systems. Proof-of-principle numerical simulation results are provided, that suggest the amplitude regeneration capability based on FWM in a highly nonlinear fiber (HNLF). The first reported experimental demonstration of amplitude equalization of 40 Gbit/s RZ-DPSK signals using a 500 m long HNLF is presented. Using four possible phase levels to carry the information, DQPSK allows generation of high-speed optical signals at bit rate that is twice the operating speed of the electronics involved. Generation of an 80 Gbit/s DQPSK signal is demonstrated using 40 Gbit/s equipment. The first demonstration of wavelength conversion of such a high-speed signal is implemented using FWM in a 1 km long HNLF. No indication of error floor is observed. Using polarization multiplexing and combination of DQPSK with ASK and RZ pulse carving at a symbol rate of 40 Gbaud, a 240 Gbit/s RZ-DQPSK-ASK signal is generated and transmitted over 50 km fiber span with no power penalty. In summary, we show that direct detection and all-optical signal processing -including optical labeling, wavelength conversion and signal regeneration- that already have been studied intensively for signals using conventional on-off keying (OOK) format, can also be successfully implemented for high-speed phase modulated signals. The results obtained in this work are believed to enhance the feasibility of phase modulation in future ultra-high speed spectrally efficient optical communication systems

    Optical label-controlled transparent metro-access network interface

    Get PDF

    Optical packet networks : enabling innovative switching technologies

    Get PDF
    Les réseaux informatiques avec une grande capacité nécessitent des liaisons de transmission de données rapides et fiables pour prendre en charge les applications web en pleine croissance. Comme le nombre de serveurs interconnectés et la capacité de stockage des médias ne cessent daugmenter, les communications optiques et les technologies de routage sont devenues intéressantes grâce au taux binaire élevé et à lencombrement minimum offert par la fibre optique. Les réseaux optiques à commutation de paquets (OPSNs) offrent une flexibilité accrue dans la gestion de réseau. OPSNs exploitent les convertisseurs de longueur donde accordables (WC) pour minimiser la probabilité de blocage et fournir une allocation dynamique des longueurs donde. Les émetteurs optiques basés sur des sources multi-longueurs donde se présentent comme une solution intéressante en termes de coût, dencombrement et defficacité énergétique par rapport aux autres types de lasers. Les convertisseurs de longueurs donde doivent permettre des taux binaires élevés et une transparence à une grande variété de formats de modulation, tout en offrant une réponse rapide, des niveaux de puissance modérés et un rapport de signal à bruit optique (OSNR) acceptable à la sortie. Plusieurs technologies de conversion de longueur donde ont été proposées dans la littérature. Lutilisation du mélange à quatre ondes (FWM) dans les amplificateurs optiques à semi-conducteurs (SOA) permet lutilisation de faibles niveaux de puissance dentrée et offre une bonne efficacité de conversion ainsi que la possibilité dintégration photonique. Les SOAs offrent donc un excellent compromis par rapport aux autres solutions. Pour couvrir une plus large bande de conversion, nous utilisons le schéma exploitant le FWM avec doubles pompes dans les SOAs. Pour la stabilité de phase, les pompes viennent d’un laser en mode bloqué (QDMLL) qui sert comme source multi-longueurs donde. Deux modes du QDMLL sont sélectionnés par un filtrage accordable et servent comme doubles pompes. Un filtre accordable placé à la sortie du SOA sert à sélectionner le produit du FWM pour le signal final. Nous étudions le convertisseur de longueur donde proposé et comparons sa performance pour différents formats de modulation (modulation dintensité et de phase) et à différents débits binaires (10 et 40 Gbit/s). Le taux derreur binaire, lefficacité de conversion et la mesure de lOSNR sont présentés. Nous démontrons aussi la possibilité de simultanément convertir en longueurs donde les données et l’étiquette. Les données à haut débit et l’étiquette à faible débit se retrouvent dans une seule bande de longueurs d’onde, et ils sont convertis ensemble avec une bonne efficacité. Notre démonstration se concentre sur les performances de conversion, donc les données et létiquette sont des signaux continus plutôt que de paquets optiques. Des mesures de taux derreur binaire ont été effectuées à la fois pour les données et pour létiquette. Nous proposons aussi lutilisation de QDMLL comme source de transmetteurs WDM pour deux applications différentes: unicast et multicast. Nous démontrons aussi sa compatibilité avec le format de transmission DQPSK à haut débit binaire. Nous évaluons la performance du DQPSK en terme de taux derreur binaire et comparons sa performance à celle dune source laser à cavité externe.Large scale computer networks require fast and reliable data links in order to support growing web applications. As the number of interconnected servers and storage media increases, optical communications and routing technologies become interesting because of the high speed and small footprint of optical fiber links. Furthermore, optical packet switched networks (OPSN) provide increased flexibility in network management. Future networks are envisaged to be wavelength dependent routing, therefore OPSN will exploit tunable wavelength converters (WC) to enable contention resolution, reduce wavelength blocking in wavelength routing and switching, and provide dynamic wavelength assignment. Optical transmitters based on multi-wavelength sources are presented as an attrative solution compared to a set of single distributed feedback lasers in terms of cost, footprint and power consumption. Wavelength converters should support high bit rates and a variety of signal formats, have fast setup time, moderate input power levels and high optical signal-to-noise ratio at the output. Several wavelength conversion technologies have been demonstrated. The use of four wave mixing (FWM) in semiconductor optical amplifiers (SOAs) provides low input power levels, acceptable conversion efficiency and the possibility of photonic integration. SOAs therefore offer excellent trade-offs compared to other solutions. To achieve wide wavelength coverage and integrability, we use a dual pump scheme exploiting four-wave mixing in semiconductor optical amplifiers. For phase stability, we use a quantum-dash mode-locked laser (QD-MLL) as a multi-wavelength source for the dual pumps, with tunability provided by the frequency selective filter. We investigate the proposed wavelength converter and compare its performance of wavelength conversion for different non-return-to-zero (NRZ) intensity and phase modulation formats at different bit rates (10 and 40 Gbit/s). Bit error rate, conversion efficiency and optical signal-to-noise ratio measurements are reported. We demonstrate the possibility of tightly packed payload and label wavelength conversion at very high data baud rate over wide tuning range with good conversion efficiency. Our demonstration concentrates on conversion performance, hence continuous payload and label signals were used without gating into packets. Bit error measurements for both payload and label were performed. We propose the use of QD-MLL as multi-wavelength source for WDM unicast and multicast applications and we investigated its compatibility with DQPSK transmission at high bit rate. We quantify DQPSK performance via bit error rate measurements and compare performance to that of an external cavity laser (ECL) source

    Optical time domain add-drop multiplexing employing fiber nonlinearities

    Get PDF
    Het in dit proefschrift beschreven onderzoek richt zich op het ontrafelen van in het tijdsdomein gestapelde optische signalen, ook wel optical time division multiplexing (OTDM) genoemd, en de bijbehorende technologische uitdagingen. Dit werk richt zich in het bijzonder op het toevoegen en extraheren van een specifieke datastroom uit een OTDM signaal. De component die deze functie uitvoert kan worden aangeduid als een add-drop multiplexer (ADM). Deze ADMs kunnen worden onderverdeeld in twee categorieën. De eerste categorie is gebaseerd op oplossingen die gebruik maken van halfgeleider materiaal en de tweede categorie benut de niet-lineariteit van een glasvezel. Een onderzochte halfgeleider materiaal ADM techniek is gebaseerd op het crossabsorption modulation (XAM) effect in een electro-absorptie modulator (EAM). Een model, gebaseerd op propagatie-vergelijkingen in halfgeleider materiaal, is ontwikkeld om de invloed van het XAM effect te kunnen simuleren. Resultaten verkregen met dit model komen goed overeen met experimenteel verkregen resultaten. Foutvrij extraheren (demultiplexen) van een 10 Gb/s datakanaal uit een 80 Gb/s OTDM signaal, met behulp van XAM in een EAM is experimenteel aangetoond. Een nieuw concept genaamd cross-polarisatie rotatie (XPR) is geïntroduceerd om het contrast ratio van de EAM demultiplexer te verbeteren. Ondanks verbetering van het contrast ratio van de demultiplexer is er geen significante verbetering van de prestatie waarneembaar. Mogelijkheden om de EAM in een 160 Gb/s demultiplexer configuratie te gebruiken zijn onderzocht. De kwaliteit van de EAM als optische schakelaar is sterk afhankelijk van het maximaal toegestane ingangsvermogen. Een hoger vermogen van het optische kloksignaal leidt tot een sterker absorptie verzadigingseffect. De snelheid van de EAM als optische schakelaar is begrensd door de hersteltijd van de vrije elektronen en gaten in de halfgeleider, gezamenlijk de carriers genoemd. Een verhoging van de negatieve biasspanning leidt tot een verkorting van de carrier hersteltijd. Een nadeel van het gebruik van een hogere biasspanning is de bijkomende hogere absorptie wat resulteert in een hoger vereist ingangsvermogen om de absorptie te verzadigen, omdat anders een verslechtering van de signaal-ruis verhouding onvermijdelijk is. Een belangrijk deel van het proefschrift richt zich op ADMs die de niet-lineariteit van een glasvezel benutten. Een van de meest veelbelovende oplossingen is gebaseerd op de nonlinear optical loop mirror (NOLM). Een geheel optische tijdsdomein ADM gebaseerd op een NOLM structuur is voor het eerst gedemonstreerd op datasnelheden boven de 80 Gb/s. Simulaties en experimenteel onderzoek zijn uitgevoerd op 160 Gb/s en 320 Gb/s. De prestatie limiterende factoren in de NOLM gebaseerde ADM zijn overspraak van naburige kanalen voor het extraheren van een kanaal en incomplete verwijdering van het geëxtraheerde kanaal voor het toevoegen van een nieuw kanaal. De jitter op het controle- en datasignaal en een niet geoptimaliseerde NOLM ingangskoppelaar verslechteren de kwaliteit van de ADM. De behaalde resultaten openen mogelijkheden om in de toekomst het systeem op te waarderen naar 640 Gb/s. De conversie van twee 10 Gb/s non-return to zero (NRZ) golflengte gestapelde kanalen (WDM) naar één 20 Gbs return-to-zero (RZ) OTDM signaal is experimenteel gekarakteriseerd. Het conversie principe is gebaseerd op four-wave mixing (FWM) in een sterk niet-lineare vezel (HNLF). Een voordeel van deze conversie techniek is dat er geen extra NRZ naar RZ conversiestap vereist is. Een tweede voordeel is de transparantie van FWM ten opzichte van de gebruikte modulatie techniek. Zo is deze techniek bijvoorbeeld ook geschikt voor fasegemoduleerde datasignalen. De beperkingen van deze conversie techniek zijn onderzocht. Conversie van 2x10 Gb/s WDM naar 20 Gb/s OTDM is experimenteel aangetoond, maar simulaties wijzen uit dat deze techniek niet geschikt is voor conversie van 4x40 Gb/s WDM naar 160 Gb/s OTDM, omdat het optische vermogen van het geconverteerde signaal erg laag is als gevolg van de lage efficiëntie van het FWM proces. Een alternatieve ADM techniek die ook bestudeerd is, is gebaseerd op cross-phase modulatie (XPM) spectrale verbreding in combinatie met filtering. Het voordeel van deze techniek is het geringere aantal benodigde componenten voor de constructie van een complete ADM in vergelijking met een ADM gebaseerd op een NOLM of een Kerr shutter. Simulaties en experimenteel werk demonstreren de mogelijkheden van deze techniek. Een geheel optische tijddomein ADM voor fasegemoduleerde signalen is voor de eerste maal aangetoond. Add-drop multiplexing van een 80 Gb/s RZ-DPSK OTDM signaal gebaseerd op de Kerr shutter met 375 meter HNLF is experimenteel gedemonstreerd. De fase-informatie in het signaal is behouden in de complete ADM. Praktische beperkingen in de experimentele set-up begrensden de datasnelheid tot 80 Gb/s. Een ADM experiment op 320 Gb/s met amplitude gemoduleerde signalen geeft een indicatie van de mogelijkheden van de Kerr shutter als ultrasnelle schakelaar

    Digital Signal Processing for Optical Coherent Communication Systems

    Get PDF

    Electroabsorption modulators used for all-optical signal processing and labelling

    Get PDF

    Advanced Functionalities for Highly Reliable Optical Networks

    Get PDF
    • …
    corecore