8,556 research outputs found

    A Data-driven Model for Interaction-aware Pedestrian Motion Prediction in Object Cluttered Environments

    Full text link
    This paper reports on a data-driven, interaction-aware motion prediction approach for pedestrians in environments cluttered with static obstacles. When navigating in such workspaces shared with humans, robots need accurate motion predictions of the surrounding pedestrians. Human navigation behavior is mostly influenced by their surrounding pedestrians and by the static obstacles in their vicinity. In this paper we introduce a new model based on Long-Short Term Memory (LSTM) neural networks, which is able to learn human motion behavior from demonstrated data. To the best of our knowledge, this is the first approach using LSTMs, that incorporates both static obstacles and surrounding pedestrians for trajectory forecasting. As part of the model, we introduce a new way of encoding surrounding pedestrians based on a 1d-grid in polar angle space. We evaluate the benefit of interaction-aware motion prediction and the added value of incorporating static obstacles on both simulation and real-world datasets by comparing with state-of-the-art approaches. The results show, that our new approach outperforms the other approaches while being very computationally efficient and that taking into account static obstacles for motion predictions significantly improves the prediction accuracy, especially in cluttered environments.Comment: 8 pages, accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA) 201

    A Data-driven Model for Interaction-aware Pedestrian Motion Prediction in Object Cluttered Environments

    Full text link
    This paper reports on a data-driven, interaction-aware motion prediction approach for pedestrians in environments cluttered with static obstacles. When navigating in such workspaces shared with humans, robots need accurate motion predictions of the surrounding pedestrians. Human navigation behavior is mostly influenced by their surrounding pedestrians and by the static obstacles in their vicinity. In this paper we introduce a new model based on Long-Short Term Memory (LSTM) neural networks, which is able to learn human motion behavior from demonstrated data. To the best of our knowledge, this is the first approach using LSTMs, that incorporates both static obstacles and surrounding pedestrians for trajectory forecasting. As part of the model, we introduce a new way of encoding surrounding pedestrians based on a 1d-grid in polar angle space. We evaluate the benefit of interaction-aware motion prediction and the added value of incorporating static obstacles on both simulation and real-world datasets by comparing with state-of-the-art approaches. The results show, that our new approach outperforms the other approaches while being very computationally efficient and that taking into account static obstacles for motion predictions significantly improves the prediction accuracy, especially in cluttered environments.Comment: 8 pages, accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA) 201

    Pedestrian flows in bounded domains with obstacles

    Full text link
    In this paper we systematically apply the mathematical structures by time-evolving measures developed in a previous work to the macroscopic modeling of pedestrian flows. We propose a discrete-time Eulerian model, in which the space occupancy by pedestrians is described via a sequence of Radon positive measures generated by a push-forward recursive relation. We assume that two fundamental aspects of pedestrian behavior rule the dynamics of the system: On the one hand, the will to reach specific targets, which determines the main direction of motion of the walkers; on the other hand, the tendency to avoid crowding, which introduces interactions among the individuals. The resulting model is able to reproduce several experimental evidences of pedestrian flows pointed out in the specialized literature, being at the same time much easier to handle, from both the analytical and the numerical point of view, than other models relying on nonlinear hyperbolic conservation laws. This makes it suitable to address two-dimensional applications of practical interest, chiefly the motion of pedestrians in complex domains scattered with obstacles.Comment: 25 pages, 9 figure

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Modeling Cooperative Navigation in Dense Human Crowds

    Full text link
    For robots to be a part of our daily life, they need to be able to navigate among crowds not only safely but also in a socially compliant fashion. This is a challenging problem because humans tend to navigate by implicitly cooperating with one another to avoid collisions, while heading toward their respective destinations. Previous approaches have used hand-crafted functions based on proximity to model human-human and human-robot interactions. However, these approaches can only model simple interactions and fail to generalize for complex crowded settings. In this paper, we develop an approach that models the joint distribution over future trajectories of all interacting agents in the crowd, through a local interaction model that we train using real human trajectory data. The interaction model infers the velocity of each agent based on the spatial orientation of other agents in his vicinity. During prediction, our approach infers the goal of the agent from its past trajectory and uses the learned model to predict its future trajectory. We demonstrate the performance of our method against a state-of-the-art approach on a public dataset and show that our model outperforms when predicting future trajectories for longer horizons.Comment: Accepted at ICRA 201

    VELOS : a VR platform for ship-evacuation analysis

    Get PDF
    Virtual Environment for Life On Ships (VELOS) is a multi-user Virtual Reality (VR) system that aims to support designers to assess (early in the design process) passenger and crew activities on a ship for both normal and hectic conditions of operations and to improve ship design accordingly. This article focuses on presenting the novel features of VELOS related to both its VR and evacuation-specific functionalities. These features include: (i) capability of multiple users’ immersion and active participation in the evacuation process, (ii) real-time interactivity and capability for making on-the-fly alterations of environment events and crowd-behavior parameters, (iii) capability of agents and avatars to move continuously on decks, (iv) integrated framework for both the simplified and advanced method of analysis according to the IMO/MSC 1033 Circular, (v) enrichment of the ship geometrical model with a topological model suitable for evacuation analysis, (vi) efficient interfaces for the dynamic specification and handling of the required heterogeneous input data, and (vii) post-processing of the calculated agent trajectories for extracting useful information for the evacuation process. VELOS evacuation functionality is illustrated using three evacuation test cases for a ro–ro passenger ship
    corecore