83 research outputs found

    A Non-Probabilistic Model of Relativised Predictability in Physics

    Full text link
    Little effort has been devoted to studying generalised notions or models of (un)predictability, yet is an important concept throughout physics and plays a central role in quantum information theory, where key results rely on the supposed inherent unpredictability of measurement outcomes. In this paper we continue the programme started in [1] developing a general, non-probabilistic model of (un)predictability in physics. We present a more refined model that is capable of studying different degrees of "relativised" unpredictability. This model is based on the ability for an agent, acting via uniform, effective means, to predict correctly and reproducibly the outcome of an experiment using finite information extracted from the environment. We use this model to study further the degree of unpredictability certified by different quantum phenomena, showing that quantum complementarity guarantees a form of relativised unpredictability that is weaker than that guaranteed by Kochen-Specker-type value indefiniteness. We exemplify further the difference between certification by complementarity and value indefiniteness by showing that, unlike value indefiniteness, complementarity is compatible with the production of computable sequences of bits.Comment: 10 page

    A Quantum Random Number Generator Certified by Value Indefiniteness

    Full text link
    In this paper we propose a quantum random number generator (QRNG) which utilizes an entangled photon pair in a Bell singlet state, and is certified explicitly by value indefiniteness. While "true randomness" is a mathematical impossibility, the certification by value indefiniteness ensures the quantum random bits are incomputable in the strongest sense. This is the first QRNG setup in which a physical principle (Kochen-Specker value indefiniteness) guarantees that no single quantum bit produced can be classically computed (reproduced and validated), the mathematical form of bitwise physical unpredictability. The effects of various experimental imperfections are discussed in detail, particularly those related to detector efficiencies, context alignment and temporal correlations between bits. The analysis is to a large extent relevant for the construction of any QRNG based on beam-splitters. By measuring the two entangled photons in maximally misaligned contexts and utilizing the fact that two rather than one bitstring are obtained, more efficient and robust unbiasing techniques can be applied. A robust and efficient procedure based on XORing the bitstrings together---essentially using one as a one-time-pad for the other---is proposed to extract random bits in the presence of experimental imperfections, as well as a more efficient modification of the von Neumann procedure for the same task. Some open problems are also discussed.Comment: 25 pages, 3 figure

    What Makes a Computation Unconventional?

    Full text link
    A coherent mathematical overview of computation and its generalisations is described. This conceptual framework is sufficient to comfortably host a wide range of contemporary thinking on embodied computation and its models.Comment: Based on an invited lecture for the 'Symposium on Natural/Unconventional Computing and Its Philosophical Significance' at the AISB/IACAP World Congress 2012, University of Birmingham, July 2-6, 201

    Classical, quantum and biological randomness as relative unpredictability

    Get PDF
    International audienceWe propose the thesis that randomness is unpredictability with respect to an intended theory and measurement. From this point view we briefly discuss various forms of randomness that physics, mathematics and computing science have proposed. Computing science allows to discuss unpredictability in an abstract, yet very expressive way, which yields useful hierarchies of randomness and may help to relate its various forms in natural sciences. Finally we discuss biological randomness — its peculiar nature and role in ontogenesis and in evolutionary dynamics (phylogenesis). Randomness in biology has a positive character as it contributes to the organisms' and populations' structural stability by adaptation and diversity. Abstract We propose the thesis that randomness is unpredictability with respect to an intended theory and measurement. From this point view we briefly discuss various forms of randomness that physics, mathematics and computing science have proposed. Computing science allows to discuss unpredictability in an abstract, yet very expressive way, which yields useful hierarchies of randomness and may help to relate its various forms in natural sciences. Finally we discuss biological randomness—its peculiar nature and role in ontogenesis and in evolutionary dynamics (phylogenesis). Randomness in biology has a positive character as it contributes to the organisms' and populations' structural stability by adaptation and diversity
    • …
    corecore