3 research outputs found

    Spin-Transfer-Torque (STT) Devices for On-chip Memory and Their Applications to Low-standby Power Systems

    Get PDF
    With the scaling of CMOS technology, the proportion of the leakage power to total power consumption increases. Leakage may account for almost half of total power consumption in high performance processors. In order to reduce the leakage power, there is an increasing interest in using nonvolatile storage devices for memory applications. Among various promising nonvolatile memory elements, spin-transfer torque magnetic RAM (STT-MRAM) is identified as one of the most attractive alternatives to conventional SRAM. However, several design challenges of STT-MRAM such as shared read and write current paths, single-ended sensing, and high dynamic power are major challenges to be overcome to make it suitable for on-chip memories. To mitigate such problems, we propose a domain wall coupling based spin-transfer torque (DWCSTT) device for on-chip caches. Our proposed DWCSTT bit-cell decouples the read and the write current paths by the electrically-insulating magnetic coupling layer so that we can separately optimize read operation without having an impact on write-ability. In addition, the complementary polarizer structure in the read path of the DWCSTT device allows DWCSTT to enable self-referenced differential sensing. DWCSTT bit-cells improve the write power consumption due to the low electrical resistance of the write current path. Furthermore, we also present three different bit-cell level design techniques of Spin-Orbit Torque MRAM (SOT-MRAM) for alleviating some of the inefficiencies of conventional magnetic memories while maintaining the advantages of spin-orbit torque (SOT) based novel switching mechanism such as low write current requirement and decoupled read and write current path. Our proposed SOT-MRAM with supporting dual read/write ports (1R/1W) can address the issue of high-write latency of STT-MRAM by simultaneous 1R/1W accesses. Second, we propose a new type of SOT-MRAM which uses only one access transistor along with a Schottky diode in order to mitigate the area-overhead caused by two access transistors in conventional SOT-MRAM. Finally, a new design technique of SOT-MRAM is presented to improve the integration density by utilizing a shared bit-line structure

    Leveraging the Intrinsic Switching Behaviors of Spintronic Devices for Digital and Neuromorphic Circuits

    Get PDF
    With semiconductor technology scaling approaching atomic limits, novel approaches utilizing new memory and computation elements are sought in order to realize increased density, enhanced functionality, and new computational paradigms. Spintronic devices offer intriguing avenues to improve digital circuits by leveraging non-volatility to reduce static power dissipation and vertical integration for increased density. Novel hybrid spintronic-CMOS digital circuits are developed herein that illustrate enhanced functionality at reduced static power consumption and area cost. The developed spin-CMOS D Flip-Flop offers improved power-gating strategies by achieving instant store/restore capabilities while using 10 fewer transistors than typical CMOS-only implementations. The spin-CMOS Muller C-Element developed herein improves asynchronous pipelines by reducing the area overhead while adding enhanced functionality such as instant data store/restore and delay-element-free bundled data asynchronous pipelines. Spintronic devices also provide improved scaling for neuromorphic circuits by enabling compact and low power neuron and non-volatile synapse implementations while enabling new neuromorphic paradigms leveraging the stochastic behavior of spintronic devices to realize stochastic spiking neurons, which are more akin to biological neurons and commensurate with theories from computational neuroscience and probabilistic learning rules. Spintronic-based Probabilistic Activation Function circuits are utilized herein to provide a compact and low-power neuron for Binarized Neural Networks. Two implementations of stochastic spiking neurons with alternative speed, power, and area benefits are realized. Finally, a comprehensive neuromorphic architecture comprising stochastic spiking neurons, low-precision synapses with Probabilistic Hebbian Plasticity, and a novel non-volatile homeostasis mechanism is realized for subthreshold ultra-low-power unsupervised learning with robustness to process variations. Along with several case studies, implications for future spintronic digital and neuromorphic circuits are presented
    corecore