96,144 research outputs found

    Green-pumped, picosecond MgO:PPLN optical parametric oscillator

    No full text
    We investigate the performance of a magnesium-oxide-doped periodically poled lithium niobate crystal (MgO:PPLN) in an optical parametric oscillator (OPO) synchronously-pumped by 530nm, 20ps, 230MHz pulses with an average power of up to 2W from a frequency-doubled, gain-switched laser diode seed and a multi-stage Yb:fiber amplifier system. The OPO produces ~165mW (signal, 845nm) and ~107mW (idler, 1421nm) of average power for ~1W of pump power and can be tuned from ~800nm to 900nm (signal) and 1.28µm to 1.54µm (idler). Observations of photo-refraction and green-induced infrared absorption (GRIIRA) in different operational regimes of the MgO:PPLN OPO are described and the role of peak intensity and average power are investigated, both with the aim to find the optimal operating regime for pulsed systems

    Intensity Noise Optimization of a Mid-Infrared Frequency Comb Difference Frequency Generation Source

    Full text link
    We experimentally demonstrate in a difference-frequency generation mid-infrared frequency comb source the effect of temporal overlap between pump- and signal- pulse to the relative intensity noise (RIN) of the idler pulse. When scanning the temporal delay between our 130 fs long signal- and pump pulses, we observe a RIN minimum with a 3 dB width of 20 fs delay and an RIN increase of 20 dB in 40 fs delay at the edges of this minimum. We also demonstrate active long-term stabilization of the mid-infrared frequency comb source to the temporal overlap setting corresponding to the lowest RIN operation point by an on-line RIN-detector and active feedback control of the pump-signal- pulse delay. This active stabilization set-up allowed us to dramatically increase the signal-to-noise ratio of mid-infrared absorption spectra

    Entangled photon apparatus for the undergraduate laboratory

    Full text link
    We present detailed instructions for constructing and operating an apparatus to produce and detect polarization-entangled photons. The source operates by type-I spontaneous parametric downconversion in a two-crystal geometry. Photons are detected in coincidence by single-photon counting modules and show strong angular and polarization correlations. We observe more than 100 entangled photon pairs per second. A test of a Bell inequality can be performed in an afternoon.Comment: 6 pages, 9 figure

    Multiple-octave spanning mid-IR supercontinuum generation in bulk quadratic nonlinear crystals

    Get PDF
    Bright and broadband coherent mid-IR radiation is important for exciting and probing molecular vibrations. Using cascaded nonlinearities in conventional quadratic nonlinear crystal like lithium niobate, self-defocusing near-IR solitons have been demonstrated that led to very broadband supercontinuum generation in the visible, near-IR and short-wavelength mid-IR. Here we conduct an experiment where a mid-IR crystal pumped in the mid-IR gives multiple-octave spanning supercontinua. The crystal is cut for noncritical interaction, so the three-wave mixing of a single mid-IR femtosecond pump source leads to highly phase-mismatched second-harmonic generation. This self-acting cascaded process leads to the formation of a self-defocusing soliton at the mid-IR pump wavelength and after the self-compression point multiple octave-spanning supercontinua are observed (covering 1.6-7.0 μ7.0~\mum). The results were recorded in a commercially available crystal LiInS2_2 pumped in the 3-4 μ4~\mum range, but other mid-IR crystals can readily be used as well.Comment: submitted to APL Photonic

    Generation and Direct Detection of Broadband Mesoscopic Polarization-Squeezed Vacuum

    Full text link
    Using a traveling-wave OPA with two orthogonally oriented type-I BBO crystals pumped by picosecond pulses, we generate vertically and horizontally polarized squeezed vacuum states within a broad range of wavelengths and angles. Depending on the phase between these states, fluctuations in one or another Stokes parameters are suppressed below the shot-noise limit. Due to the large number of photon pairs produced, no local oscillator is required, and 3dB squeezing is observed by means of direct detection.Comment: 4 pages, 4 figures, submitted to PR
    • …
    corecore