121 research outputs found

    Context-Aware Mobile Apps using iBeacons: Towards Smarter Interactions

    Get PDF
    In this paper we describe four mobile apps for iOS devices that use Bluetooth Low Energy iBeacons to provide contextual relevance and personalized experiences for the user. The applications span a number of vertical markets including asset tracking, food transportation logistics and health care. We developed these apps in collaboration with an industry partner located in Mississauga, Ontario, Canada. In this paper we present the relevant background of work in this area, the architectural framework that we designed and developed to support these context-aware apps, the apps themselves, and report on the findings of real use test case scenarios

    Sensor Behavior Modeling and Algorithm Design for Intelligent Presence Detection in Nursery Rooms using iBeacon

    Get PDF
    This thesis is a part of a research project performed by two MS students Yang Yang and the author. The overall objective of the project is the design, implementation, and performance evaluation of algorithms for newborn localization and tracking in hospitals using Apple iBeacon technology. In the research project, I lead the path-loss modeling of iBeacon, design of algorithms for in-room presence detection system, and analysis of the accelerometer sensor. My partner, Yang Yang, leads the performance evaluation of the localization system using Cramer Rao Lower Bound (CRLB). This manuscript describes the project with a focus on my contributions in modeling the behavior of sensors and presence detection algorithms. Today, RFID detection is the most popular indoor detection technique. It provides high precision detection rate to distinguish the number of people in certain rooms of a building. However, special scanners and manual operations are required. This increases the cost and operation complexity. With the recent introduction of iBeacon by Apple, possibility of more efficient in-room presence detection has emerged for specific applications. An example of these applicatons is recording the number of visitors and newborns in a nursery room inside a hospital. The iBeacon uses Bluetooth Low Energy (BLE) technology for proximity broadcasting. Additionally, iBeacon carries a motion detection sensor, which can be utilized for counting the number of people and newborns entering and leaving a room. In this thesis we introduce a novel intelligent in-room presence detection system using iBeacon for the newborns in hospitals to determine the number of visitors and newborns\u27 location in the nursery room. We first develop a software application on iPhone to receive and extract the necessary data from iBeacon for further analysis. We build the path-loss model for the iBeacon based on the received signal strength (RSS) of the iBeacon, which is used for performance evaluation using CRLB in Yang Yang\u27s project. We also utilize the accelerometer in the smart phones to improve the performance of our detection system

    Digital places: location-based digital practices in higher education using Bluetooth Beacons

    Get PDF
    The physical campus is a shared space that enables staff and students, industry and the public, to collaborate in the acquisition, construction and consolidation of knowledge. However, its position as the primary place for learning is being challenged by blended modes of study that range from learning experiences from fully online to more traditional campus-based approaches. Bluetooth beacons offer the potential to combine the strengths of both the digital world and the traditional university campus by augmenting physical spaces to enhance learning opportunities, and the student experience more generally. This simple technology offers new possibilities to extend and enrich opportunities for learning by exploiting the near-ubiquitous nature of personal technology. This paper provides a high-level overview of Bluetooth beacon technology, along with an indication of some of the ways in which it is developing, and ways that it could be used to support learning in higher education

    Airport Accessibility and Navigation Assistance for People with Visual Impairments

    Get PDF
    People with visual impairments often have to rely on the assistance of sighted guides in airports, which prevents them from having an independent travel experience. In order to learn about their perspectives on current airport accessibility, we conducted two focus groups that discussed their needs and experiences in-depth, as well as the potential role of assistive technologies. We found that independent navigation is a main challenge and severely impacts their overall experience. As a result, we equipped an airport with a Bluetooth Low Energy (BLE) beacon-based navigation system and performed a real-world study where users navigated routes relevant for their travel experience. We found that despite the challenging environment participants were able to complete their itinerary independently, presenting none to few navigation errors and reasonable timings. This study presents the first systematic evaluation posing BLE technology as a strong approach to increase the independence of visually impaired people in airports

    A cultural heritage experience for visually impaired people

    Get PDF
    In recent years, we have assisted to an impressive advance of computer vision algorithms, based on image processing and artificial intelligence. Among the many applications of computer vision, in this paper we investigate on the potential impact for enhancing the cultural and physical accessibility of cultural heritage sites. By using a common smartphone as a mediation instrument with the environment, we demonstrate how convolutional networks can be trained for recognizing monuments in the surroundings of the users, thus enabling the possibility of accessing contents associated to the monument itself, or new forms of fruition for visually impaired people. Moreover, computer vision can also support autonomous mobility of people with visual disabilities, for identifying pre-defined paths in the cultural heritage sites, and reducing the distance between digital and real world

    Indoor positioning of shoppers using a network of bluetooth low energy beacons

    Get PDF
    In this paper we present our work on the indoor positioning of users (shoppers), using a network of Bluetooth Low Energy (BLE) beacons deployed in a large wholesale shopping store. Our objective is to accurately determine which product sections a user is adjacent to while traversing the store, using RSSI readings from multiple beacons, measured asynchronously on a standard commercial mobile device. We further wish to leverage the store layout (which imposes natural constraints on the movement of users) and the physical configuration of the beacon network, to produce a robust and efficient solution. We start by describing our application context and hardware configuration, and proceed to introduce our node-graph model of user location. We then describe our experimental work which begins with an investigation of signal characteristics along and across aisles. We propose three methods of localization, using a “nearest-beacon” approach as a base-line; exponentially averaged weighted range estimates; and a particle-filter method based on the RSSI attenuation model and Gaussian-noise. Our results demonstrate that the particle filter method significantly out-performs the others. Scalability also makes this method ideal for applications run on mobile devices with more limited computational capabilitie
    • …
    corecore