3 research outputs found

    A case study for cloud based high throughput analysis of NGS data using the globus genomics system

    Get PDF
    AbstractNext generation sequencing (NGS) technologies produce massive amounts of data requiring a powerful computational infrastructure, high quality bioinformatics software, and skilled personnel to operate the tools. We present a case study of a practical solution to this data management and analysis challenge that simplifies terabyte scale data handling and provides advanced tools for NGS data analysis. These capabilities are implemented using the ā€œGlobus Genomicsā€ system, which is an enhanced Galaxy workflow system made available as a service that offers users the capability to process and transfer data easily, reliably and quickly to address end-to-endNGS analysis requirements. The Globus Genomics system is built on Amazon's cloud computing infrastructure. The system takes advantage of elastic scaling of compute resources to run multiple workflows in parallel and it also helps meet the scale-out analysis needs of modern translational genomics research

    Experiences Building Globus Genomics: A Next-Generation Sequencing Analysis Service using Galaxy, Globus, and Amazon Web Services

    Get PDF
    ABSTRACT We describe Globus Genomics, a system that we have developed for rapid analysis of large quantities of next-generation sequencing (NGS) genomic data. This system achieves a high degree of end-to-end automation that encompasses every stage of data analysis including initial data retrieval from remote sequencing centers or storage (via the Globus file transfer system); specification, configuration, and reuse of multi-step processing pipelines (via the Galaxy workflow system); creation of custom Amazon Machine Images and on-demand resource acquisition via a specialized elastic provisioner (on Amazon EC2); and efficient scheduling of these pipelines over many processors (via the HTCondor scheduler). The system allows biomedical researchers to perform rapid analysis of large NGS datasets in a fully automated manner, without software installation or a need for any local computing infrastructure. We report performance and cost results for some representative workloads

    Data Management in the Long Tail: Science, Software, and Service

    Get PDF
    Scientists in all fields face challenges in managing and sustaining access to their research data. The larger and longer term the research project, the more likely that scientists are to have resources and dedicated staff to manage their technology and data, leaving those scientists whose work is based on smaller and shorter term projects at a disadvantage. The volume and variety of data to be managed varies by many factors, only two of which are the number of collaborators and length of the project. As part of an NSF project to conceptualize the Institute for Empowering Long Tail Research, we explored opportunities offered by Software as a Service (SaaS). These cloud-based services are popular in business because they reduce costs and labor for technology management, and are gaining ground in scientific environments for similar reasons. We studied three settings where scientists conduct research in small and medium-sized laboratories. Two were NSF Science and Technology Centers (CENS and C-DEBI) and the third was a workshop of natural reserve scientists and managers. These laboratories have highly diverse data and practices, make minimal use of standards for data or metadata, and lack resources for data management or sustaining access to their data, despite recognizing the need. We found that SaaS could address technical needs for basic document creation, analysis, and storage, but did not support the diverse and rapidly changing needs for sophisticated domain-specific tools and services. These are much more challenging knowledge infrastructure requirements that require long-term investments by multiple stakeholders.
    corecore