30,574 research outputs found

    Expected Eligibility Traces

    Get PDF
    The question of how to determine which states and actions are responsible for a certain outcome is known as the credit assignment problem and remains a central research question in reinforcement learning and artificial intelligence. Eligibility traces enable efficient credit assignment to the recent sequence of states and actions experienced by the agent, but not to counterfactual sequences that could also have led to the current state. In this work, we introduce expected eligibility traces. Expected traces allow, with a single update, to update states and actions that could have preceded the current state, even if they did not do so on this occasion. We discuss when expected traces provide benefits over classic (instantaneous) traces in temporal-difference learning, and show that sometimes substantial improvements can be attained. We provide a way to smoothly interpolate between instantaneous and expected traces by a mechanism similar to bootstrapping, which ensures that the resulting algorithm is a strict generalisation of TD(λ\lambda). Finally, we discuss possible extensions and connections to related ideas, such as successor features.Comment: AAAI, distinguished paper awar

    Eligibility Traces and Plasticity on Behavioral Time Scales: Experimental Support of neoHebbian Three-Factor Learning Rules

    Full text link
    Most elementary behaviors such as moving the arm to grasp an object or walking into the next room to explore a museum evolve on the time scale of seconds; in contrast, neuronal action potentials occur on the time scale of a few milliseconds. Learning rules of the brain must therefore bridge the gap between these two different time scales. Modern theories of synaptic plasticity have postulated that the co-activation of pre- and postsynaptic neurons sets a flag at the synapse, called an eligibility trace, that leads to a weight change only if an additional factor is present while the flag is set. This third factor, signaling reward, punishment, surprise, or novelty, could be implemented by the phasic activity of neuromodulators or specific neuronal inputs signaling special events. While the theoretical framework has been developed over the last decades, experimental evidence in support of eligibility traces on the time scale of seconds has been collected only during the last few years. Here we review, in the context of three-factor rules of synaptic plasticity, four key experiments that support the role of synaptic eligibility traces in combination with a third factor as a biological implementation of neoHebbian three-factor learning rules

    Truncating Temporal Differences: On the Efficient Implementation of TD(lambda) for Reinforcement Learning

    Full text link
    Temporal difference (TD) methods constitute a class of methods for learning predictions in multi-step prediction problems, parameterized by a recency factor lambda. Currently the most important application of these methods is to temporal credit assignment in reinforcement learning. Well known reinforcement learning algorithms, such as AHC or Q-learning, may be viewed as instances of TD learning. This paper examines the issues of the efficient and general implementation of TD(lambda) for arbitrary lambda, for use with reinforcement learning algorithms optimizing the discounted sum of rewards. The traditional approach, based on eligibility traces, is argued to suffer from both inefficiency and lack of generality. The TTD (Truncated Temporal Differences) procedure is proposed as an alternative, that indeed only approximates TD(lambda), but requires very little computation per action and can be used with arbitrary function representation methods. The idea from which it is derived is fairly simple and not new, but probably unexplored so far. Encouraging experimental results are presented, suggesting that using lambda &gt 0 with the TTD procedure allows one to obtain a significant learning speedup at essentially the same cost as usual TD(0) learning.Comment: See http://www.jair.org/ for any accompanying file

    Autonomous Reinforcement of Behavioral Sequences in Neural Dynamics

    Full text link
    We introduce a dynamic neural algorithm called Dynamic Neural (DN) SARSA(\lambda) for learning a behavioral sequence from delayed reward. DN-SARSA(\lambda) combines Dynamic Field Theory models of behavioral sequence representation, classical reinforcement learning, and a computational neuroscience model of working memory, called Item and Order working memory, which serves as an eligibility trace. DN-SARSA(\lambda) is implemented on both a simulated and real robot that must learn a specific rewarding sequence of elementary behaviors from exploration. Results show DN-SARSA(\lambda) performs on the level of the discrete SARSA(\lambda), validating the feasibility of general reinforcement learning without compromising neural dynamics.Comment: Sohrob Kazerounian, Matthew Luciw are Joint first author

    Multi-step Reinforcement Learning: A Unifying Algorithm

    Full text link
    Unifying seemingly disparate algorithmic ideas to produce better performing algorithms has been a longstanding goal in reinforcement learning. As a primary example, TD(λ\lambda) elegantly unifies one-step TD prediction with Monte Carlo methods through the use of eligibility traces and the trace-decay parameter λ\lambda. Currently, there are a multitude of algorithms that can be used to perform TD control, including Sarsa, QQ-learning, and Expected Sarsa. These methods are often studied in the one-step case, but they can be extended across multiple time steps to achieve better performance. Each of these algorithms is seemingly distinct, and no one dominates the others for all problems. In this paper, we study a new multi-step action-value algorithm called Q(σ)Q(\sigma) which unifies and generalizes these existing algorithms, while subsuming them as special cases. A new parameter, σ\sigma, is introduced to allow the degree of sampling performed by the algorithm at each step during its backup to be continuously varied, with Sarsa existing at one extreme (full sampling), and Expected Sarsa existing at the other (pure expectation). Q(σ)Q(\sigma) is generally applicable to both on- and off-policy learning, but in this work we focus on experiments in the on-policy case. Our results show that an intermediate value of σ\sigma, which results in a mixture of the existing algorithms, performs better than either extreme. The mixture can also be varied dynamically which can result in even greater performance.Comment: Appeared at the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18
    corecore