79,045 research outputs found

    Expectation Consistent Approximate Inference

    Get PDF
    We propose a novel framework for approximations to intractable probabilistic models which is based on a free energy formulation. The approximation can be understood from replacing an average over the original intractable distribution with a tractable one. It requires two tractable probability distributions which are made consistent on a set of moments and encode different features of the original intractable distribution. In this way we are able to use Gaussian approximations for models with discrete or bounded variables which allow us to include non-trivial correlations which are neglected in many other methods. We test the framework on toy benchmark problems for binary variables on fully connected graphs and 2D grids and compare with other methods, such as loopy belief propagation. Good performance is already achieved by using single nodes as tractable substructures. Significant improvements are obtained when a spanning tree is used instead. 1

    Expectation Consistent Free Energies for Approximate Inference

    Get PDF
    We propose a novel a framework for deriving approximations for intractable probabilistic models. This framework is based on a free energy (negative log marginal likelihood) and can be seen as a generalization of adaptive TAP [1, 2, 3] and expectation propagation (EP) [4, 5]. The free energy is constructed from two approximating distributions which encode different aspects of the intractable model such a single node constraints and couplings and are by construction consistent on a chosen set of moments. We test the framework on a difficult benchmark problem with binary variables on fully connected graphs and 2D grid graphs. We find good performance using sets of moments which either specify factorized nodes or a spanning tree on the nodes (structured approximation). Surprisingly, the Bethe approximation gives very inferior results even on grids.
    • …
    corecore