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Abstract

We propose a novel framework for approximations to intractable probabilistic models which
is based on a free energy formulation. The approximation can be understood from replacing
an average over the original intractable distribution with a tractable one. It requires two
tractable probability distributions which are made consistent on a set of moments and
encode different features of the original intractable distribution. In this way we are able
to use Gaussian approximations for models with discrete or bounded variables which allow
us to include non-trivial correlations which are neglected in many other methods. We
test the framework on toy benchmark problems for binary variables on fully connected
graphs and 2D grids and compare with other methods, such as loopy belief propagation.
Good performance is already achieved by using single nodes as tractable substructures.
Significant improvements are obtained when a spanning tree is used instead.

1. Introduction

Recent developments in data acquisition and computational power have spurred an increased
interest in flexible statistical Bayesian models in many areas of science and engineering.
Inference in probabilistic models is in many cases intractable; the computational cost of
marginalization operations can scale exponentially in the number of variables or require
integrals over multivariate non-tractable distributions. In order to treat systems with a large
number of variables, it is therefore necessary to use approximate polynomial complexity
inference methods.

Probably the most prominent and widely developed approximation technique is the so
called variational (or variational Bayes) approximation (see e.g. Jordan et al., 1999, Attias,
2000, Bishop et al., 2003). In this approach, the true intractable probability distribution
is approximated by another one which is optimally chosen within a given, tractable family
minimizing the Kullback Leibler (KL) divergence as the measure of dissimilarity between
distributions. We will use the name variational bound for this specific method because the
approximation results in an upper bound to the free energy (an entropic quantity related
to the KL divergence). The alternative approximation methods discussed in this paper can
also be derived from the variation of an approximate free energy which not necessarily is
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a bound. The most important tractable families of distributions in the variational bound
approximation are multi-variate Gaussians and distributions often in the exponential family
which factorize in the marginals of all or for certain disjoint groups of variables (Attias,
2000) (this is often called a mean–field approximation). The use of multi-variate Gaussians
allows to retain a significant amount of correlations between variables in the approximation.
However, their application in the variational bound approximation is limited to distributions
of continuous variables which have the entire real space as their natural domain. This is
due to the fact that the KL divergence would diverge for distributions with non-matching
support. Hence, in a majority of those applications, where random variables with constraint
values (e.g. Boolean ones) appear, variational distributions of the mean field type have to
be chosen. However, such factorizing approximations have the drawback that correlations
are neglected and one often observes that fluctuations are underestimated (MacKay, 2003,
Opper and Winther, 2004).

Recently, a lot of effort has been devoted to the development of approximation tech-
niques which give an improved performance compared to the variational bound approxi-
mation. Thomas Minka’s Expectation Propagation (EP) approach (Minka, 2001a,b) seems
to provide a general framework from which many of these developments can be re-derived
and understood. EP is based on a dynamical picture where factors—their product form-
ing a global tractable approximate distribution—are iteratively optimized. In contrast to
the variational bound approach, the optimization proceeds locally by minimizing KL diver-
gences between appropriately defined marginal distributions. Since the resulting algorithm
can be formulated in terms of the matching of marginal moments, this would not rule
out factorizations where discrete distributions are approximated by multivariate Gaussians.
However, such a choice seems to be highly unnatural from the derivation of the EP ap-
proximation (by the infinite KL measure) and has to our knowledge not been suggested so
far (Thomas Minka, private communication). Hence, in practice, the correlations between
discrete variables have been mainly treated using tree-based approximations. This includes
the celebrated Bethe-Kikuchi approach (Yedidia et al., 2001, Yuille, 2002, Heskes et al.,
2003), for EP interpretations (see Minka, 2001a,b, Minka and Qi, 2004) and for a variety of
related approximations within statistical physics (see Suzuki, 1995). However, while tree-
type approximations often work well for sparsely connected graphs they become inadequate
for inference problems in a dense graph regardless of the type of variables.

In this paper we present an alternative view of local-consistency approximations of the
EP–type which we call expectation consistent (EC) approximations. It can be understood by
requiring consistency between two complementary global approximations which may have
different support (say, a Gaussian one and one that factorizes into marginals). Our method
is a generalization of the adaptive TAP approach (ADATAP) (Opper and Winther, 2001a,b)
developed for inference on densely connected graphical models. Although it has been applied
successfully to a variety of problems ranging from probabilistic ICA (Hojen-Sorensen et al.,
2002) over Gaussian process models (Opper and Winther, 2000) to bootstrap methods for
kernel machines (Malzahn and Opper, 2003), see Appendix A, its potential as a fairly general
scheme has been somewhat overlooked in the Machine Learning community.1 Although one

1. This is probably due to the fact that the most detailed description of the method has so far only
appeared in the statistical physics literature (Opper and Winther, 2001a,b) in a formulation that is not
very accessible to a general audience. Shortly after the method first appeared–in the context of Gaussian
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algorithmic realization of our method can be given an EP–style interpretation (Csató et al.,
2002), we believe that it is more natural and more powerful to base the derivation on a
framework of optimizing a free energy approximation. This not only has the advantage of
providing a simple and clear way for adapting the model parameters within the empirical
Bayes framework, but also motivates different practical optimization algorithms among
which the EP–style may not always be the best choice.

Our paper is organized as follows: Section 2 motivates approximate inference and ex-
plains the notation. The expectation consistent (EC) approximation to the free energy is
derived in Section 3. Examples for EC free energies are given in Section 4. The algorithmic
issues are treated in Section 5, simulations in Section 6 and finally we conclude in Section
7.

2. Motivation: Approximate Inference

We consider the problem of computing expectations, i.e. certain sums or integrals involv-
ing a probability distribution with density p(x) for a vector of random variables x =
(x1, x2, . . . , xN ). We assume that such computations are considered intractable, either be-
cause the necessary sums are over a too large number of variables or because multivariate
integrals cannot be evaluated exactly. A further complication might occur when the density
itself is expressed by a non-normalized multivariate function f(x), say, equal to the product
of a prior and a likelihood, which requires further normalization, i.e.

p(x) =
1
Z
f(x) , (1)

where the partition function Z must be obtained by the (intractable) summation or inte-
gration of f : Z =

∫
dxf(x). In a typical scenario, f(x) is expressed as a product of two

functions
f(x) = fq(x)fr(x) (2)

with fq,r(x) ≥ 0, where fq is “simple” enough to allow for tractable computations. The goal
is to approximate the “complicated” part fr(x) by replacing it with a “simpler” function,
say of some exponential form

exp
(
λTg(x)

) ≡ exp




K∑

j=1

λjgj(x)


 . (3)

We have used the same vector notation for g-vectors as for the random variables x, however
one should note that vectors will often have different dimensionalities, i.e. K 6= N . The
vector of functions g is chosen in such a way that the desired sums or integrals can be
calculated in an efficient way and the parameters λ are adjusted to optimize certain criteria.
Hence, the word tractability should always be understood as relative to some approximating
set of functions g.

Our framework of approximation will be restricted to problems, where both parts fq and
fr can be considered as tractable relative to some suitable g, and the intractability of the

processes (Opper and Winther, 2000)–Minka introduced his EP framework and showed the equivalence
of the fix-points of the two methods for Gaussian process models.
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density p arises from forming their product.2 In such a case, one may alternatively retain
fr but replace fq by an approximation of the form eq. (3). One would then end up with
two types of approximations

q(x) =
1

Zq(λq)
fq(x) exp

(
λTq g(x)

)
(4)

r(x) =
1

Zr(λr)
fr(x) exp

(
λTr g(x)

)
, (5)

for the same density, where Zq(λq) =
∫
dx fq(x) exp

(
λTq g(x)

)
We will not assume that

either choice q and r is a reasonably good approximation for the global joint density p(x) as
we do in the variational bound approximation. In fact, later we will apply our method to the
case of Ising variables, where the KL divergence between one of them and p is even infinite!
Though, suitable different marginalizations of q and r can give quite accurate answers for
important marginal statistics.

Take, as an example, the density p(x) = f(x)/Z = fq(x)fr(x)/Z—with respect to the
Lebesgue measure in RN—with

fq(x) =
∏

i

ψi(xi) (6)

fr(x) = exp


∑

i<j

xiJijxj +
∑

i

θixi


 , (7)

where, in order to have a nontrivial problem, ψi should be a non-Gaussian function. We will
name this the quadratic model. Usually there will be an ambiguity in the choice of factor-
ization, e.g. we could have included exp (

∑
i θixi) as a part of fq(x). One may approximate

p(x) by a factorizing distribution, thereby replacing fr(x) by some function which factorizes
in the components xi. Alternatively, one can consider replacing fq(x) by a Gaussian func-
tion to make the whole distribution Gaussian. Both approximations are not ideal. The first
completely neglects correlations of the variables but leads to marginal distributions of the
xi, which might qualitatively resemble the non-Gaussian shape of the true marginal. The
second one neglects the non-Gaussian effects but incorporates correlations which might be
used in order to approximate the two variable covariance functions. While within the varia-
tional bound approximation, both approximations appear independent from each other we
will, in the following develop an approach for combining two complimentary approximations
which “communicate” by matching the corresponding expectations of the functions g(x).

2.1 Notation

Throughout the paper, densities p(x) are assumed relative to the Lebesgue measure dx in
RN . Other choices, like e.g. the simple counting measure, may lead to alternative approx-
imations for discrete variables. We will denote the expectation of a function h(x) with

2. This excludes many interesting models, e.g. mixture models, where tractability cannot be achieved with
one split. These models can be treated by applying the approximation repeatedly. But for sake of clarity
we will limit the treatment here to only one split.
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respect to a density p by brackets

〈h(x)〉 =
∫
dx p(x) h(x) =

1
Z

∫
dx f(x) h(x) , (8)

where, in cases of ambiguity, the density will appear as a subscript, like in 〈h(x)〉p. One of
the strengths of our formalism is to allow for a treatment of discrete and continuous random
variables within the same approach.

Example: Ising variables Discrete random variables can be described using Dirac dis-
tributions in the densities. E.g. the case of N independent Ising variables xi ∈ {−1,+1}
which occur with equal probabilities (one-half) have the density

p(x) =
N∏

i=1

[
1
2
δ(xi + 1) +

1
2
δ(xi − 1)

]
. (9)

3. Expectation Consistent Free Energy Approximation

In this section we will derive an approximation for the negative log–partition function
− lnZ which is usually called the (Helmholtz) free energy. We will use an approximating
distribution q(x) of the type eq. (4) and split the exact free energy into a corresponding
part − lnZq plus a rest which will be further approximated. The split is obtained by writing

Z = Zq
Z

Zq
= Zq

∫
dxfr(x)fq(x) exp

(
(λq − λq)Tg(x)

)
∫
dxfq(x) expλTq g(x)

(10)

= Zq
〈
fr(x) exp

(−λTq g(x)
)〉
q
,

where
Zq(λq) =

∫
dx fq(x) exp

(
λTq g(x)

)
. (11)

This expression can be used to derive a variational bound to the free energy − lnZ. Applying
Jensen’s inequality ln 〈f(x)〉 ≥ 〈ln f(x)〉 we arrive at

− lnZ ≤ − lnZvar = − lnZq − 〈ln fr(x)〉q + λTq 〈g(x)〉q . (12)

The optimal value for λq is found by minimizing this upper bound.
Our new approximation is obtained by arguing that one may do better by retaining the

fr(x) exp
(−λTq g(x)

)
expression in eq. (10) but instead changing the distribution we use in

averaging. Hence, we replace the average with respect to q(x) with an average using a
distribution s(x) containing the same exponential form

s(x) =
1

Zs(λs)
exp

(
λTs g(x)

)
.

Given a sensible strategy for choosing the parameters λs and λq, we expect that this ap-
proach in most cases gives a more precise approximation than the corresponding variational
bound. Qualitatively, the more one can retain of the intractable function in the averaging
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the closer the result will to the exact partition function. It is difficult to make this state-
ment quantitative and general. However, the method gives nontrivial results for a variety
of cases where the variational bound would be simply infinite! This always happens, when
fq is Gaussian and fr vanishes on a set which has nonzero probability with respect to the
density fq. Examples are when fr is discrete or contains likelihoods which vanish in cer-
tain regions as in noise-free Gaussian process classifiers (Opper and Winther, 1999). Our
approximation is further supported by the fact that for specific choices of fr and fq it is
equivalent to the adaptive TAP (ADATAP) approximation (Opper and Winther, 2001a,b).
ADATAP (unlike the variational bound) gives exact results for certain statistical ensembles
of distributions in an asymptotic (thermodynamic) limit studied in statistical physics.

Using s instead of q, we arrive at the approximation for − lnZ which depends upon two
sets of parameters λq and λs:

− lnZEC(λq,λs) = − lnZq − ln
〈
fr(x) exp

(−λTq g(x)
)〉
s

= − ln
∫
dxfq(x) exp

(
λTq g(x)

)− ln
∫
dxfr(x) exp

(
(λs − λq)Tg(x)

)

+ ln
∫
dx exp

(
λTs g(x)

)
. (13)

Here we have utilized our additional assumption, that also fr is tractable with respect to
the exponential family and thus Zr =

∫
dxfr(x) exp

(
(λs − λq)Tg(x)

)
can be computed in

polynomial time. Eq. (13) leaves two sets of parameters λq and λs to be determined. We
expect that eq. (13) is a sensible approximation as long as s(x) shares some key properties
with q, for which we choose the matching of the moments 〈g(x)〉q = 〈g(x)〉s. This will fix
λs as a function of λq. Second, we know that the exact expression eq. (10) is independent
of the value of λq. If the replacement of q(x) by s(x) yields a good approximation, one
would still expect that eq. (13) is a fairly flat function of λq (after eliminating λs) in a
certain region. Hence, it makes sense to require that an optimized approximation should
make eq. (13) stationary with respect to variations of λq. This does not imply that we are
expecting a local minimum of eq. (13), see also section 3.1, but saddle points could occur.
Since we are not after a bound on the free energy, this is not necessarily a disadvantage of
the method. Readers who feel uneasy with this argument, might find the alternative, dual
derivation (using the Gibbs free energy) in appendix B more appealing.

Both conditions can be summarized by the expectation consistency (EC) conditions

∂ lnZEC

∂λq
= 0 : 〈g(x)〉q = 〈g(x)〉r (14)

∂ lnZEC

∂λs
= 0 : 〈g(x)〉r = 〈g(x)〉s (15)

for the three approximating distributions

q(x) =
1

Zq(λq)
fq(x) exp(λTq g(x)) (16)

r(x) =
1

Zr(λr)
fr(x) exp(λTr g(x)) with λr = λs − λq (17)

s(x) =
1

Zr(λs)
exp(λTs g(x)) . (18)
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The corresponding EC approximation of the free energy is then

− lnZ ≈ − lnZEC = − lnZq(λq)− lnZr(λs − λq) + lnZs(λs) (19)

where λq and λs are chosen such that the partial derivatives of the right hand side vanish.

3.1 Properties of the EC approximation

Invariances Although our derivation started with approximating one of the two factors
fq and fr by an exponential, the final approximation is completely symmetric in the factors
fq and fr. We could have chosen to define q in terms of fr and still got the same final result.
If f contains multiplicative terms which are of the form exp

(
λTg(x)

)
for some fixed λ, we

are free to include them either in fq or fr without changing the approximation. This can
be easily shown by redefining λq → λq ± λ.

Derivatives with respect to parameters. The following is a useful result about the
derivative of − lnZEC with respect to a parameter t in the density p(x). Setting λ =
(λq,λs), we get

d lnZEC(t)
dt

=
∂ lnZEC(λ, t)

∂t
+
(
∂ lnZEC(λ, t)

∂λ

)
dλT

dt
=
∂ lnZEC(λ, t)

∂t
, (20)

where the second equality holds at the stationary point. The important message is that we
only need to take the explicit t dependence into account, i.e. we can keep the stationary val-
ues λ fixed upon differentiation. This is also a useful property one can use when optimizing
the free energy with respect to parameters in the empirical Bayes framework.

Relation to the variational bound. Applying Jensen’s inequality to (13) yields

− lnZEC(λq,λs) = − lnZq − ln
〈
fr(x) exp

(−λTq g(x)
)〉
s

≥ − lnZq − 〈ln fr(x)〉s + λTq 〈g(x)〉s .

Hence, if fr and g(x) are defined in such a way that the matching of the moments 〈g(x)〉s =
〈g(x)〉q implies 〈ln fr(x)〉q = 〈ln fr(x)〉s then the rhs of the inequality is equal to the vari-
ational (bound) free energy eq. (12) for fixed λq. This will be the case for the models
discussed in this paper. Of course, this does not imply any relation between − lnZEC and
the true free energy. The similarity of EC to the variational bound approximation should
also be interpreted with care. One could be tempted to try solving the EC stationarity
conditions by eliminating λs, i.e. enforcing the moment constraints between q and s, and
minimizing the free energy approximation − lnZEC(λq,λs(λq)) with respect to λq, as in the
variational bound method. Simple counter examples show however that this function maybe
unbounded from below and that the stationary point may not even be a local minimum.

Non-convexity. The log–partition functions lnZq,r,s(λ) are the cumulant generating func-
tions of the random variables g(x). Hence, they are differentiable and convex functions on
their domains of definition, i.e.

H =
∂2 lnZ
∂λT∂λ

=
〈
g(x)g(x)T

〉− 〈g(x)〉 〈g(x)〉T

7
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is positive semi-definite. It follows for fixed λs that eq. (19) is concave in the variable λq,
and there is only a single solution to eq. (14) corresponding to a maximum of − lnZq(λq)−
lnZr(λs − λq). On the other hand, eq. (19) is a sum of a concave and a convex function
of λs. Thus, unfortunately there may be more than one stationary point, a property which
the EC approach shares with other approximations such as the variational Bayes and the
Bethe–Kikuchi methods. Nevertheless, we can use a double loop algorithm which alternates
between solving the concave maximization problem for λq at fixed λs and updating λs given
the values of the moments 〈g(x)〉r = 〈g(x)〉q at fixed λq. We will show in Section 5 and in
Appendix B that such a simple heuristic leads to convergence to a stationary point assuming
that a certain cost function is bounded from below.

4. EC Free Energies – Examples

4.1 Tractable Free Energies

Our approach applies most naturally to a class of models for which the distribution of
random variables x can be written as a product of a factorizing part eq. (6) and “Gaussian
part” eq. (7).3 The choice of g(x) is then guided by the need to make the computation
of the EC free energy, eq. (19), tractable. The “Gaussian part” stays tractable as long as
we take 〈g(x)〉 to contain first and second moments of x. It will usually be a good idea to
take all first moments, but we have a freedom in choosing the amount of consistency and
the number of second order moments in 〈g(x)〉. To keep Zq tractable (assuming fq it is not
Gaussian), a restriction to diagonal moments, i.e. 〈x2

i 〉 will be sufficient. When variables are
discrete, it is also possible to include second moments 〈xixj〉 for pairs of variables located
at the edges G of a tree.

The following three choices represent approximations of increasing complexity:

• Diagonal restricted: consistency on 〈xi〉, i = 1, . . . , N and
∑

i〈x2
i 〉.

g(x) =

(
x1, . . . , xN ,−

∑

i

x2
i

2

)
and λ = (γ1, . . . , γN ,Λ)

• Diagonal: consistency on 〈xi〉 and 〈x2
i 〉, i = 1, . . . , N

g(x) =
(
x1,−x

2
1

2
, . . . , xN ,−x

2
N

2

)
and λ = (γ1,Λ1, . . . , γN ,ΛN )

• Spanning tree: as above and additional consistency of correlations 〈xixj〉 defined on
a spanning tree (ij) ∈ G. Since we are free to move the terms Jijxixj with (ij) ∈ G
from the Gaussian term fr into the term fq, without changing the approximation, we
find that the number of interaction terms which have to be approximated using the
complementary Gaussian density is reduced. If the tree is chosen in such a way as to
include the most important couplings (defined in a proper fashion), one can expect
that the approximation will be improved significantly.

3. A generalization where fq factorizes into tractable “potentials” ψα defined on disjoint subsets xα of x is
also straightforward.
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It is of course also possible to go beyond a spanning tree to treat a larger part of the
marginalization exactly. We will next give explicit expressions for some free energies which
will be used later for the EC approximation.

Independent Ising random variables. Here, we considerN independent Ising variables
xi ∈ {−1,+1}:

f(x) =
N∏

i=1

ψi(xi) with ψi(xi) = [δ(xi + 1) + δ(xi − 1)] . (21)

For the case of diagonal moments we get Z(λ) =
∏
i Zi(λi), λi = (γi,Λi):

Zi(λi) =
∫
dxi ψi(xi)eγixi−Λix

2
i /2 = 2 cosh(γi)e−Λi/2 . (22)

Multivariate Gaussian. Consider a Gaussian model: p(x) = 1
Z e

xTJx+θTx. We intro-
duce an arbitrary set of first moments 〈xi〉 and second moments −〈xixj〉/2 with conjugate
variables γ and Λ. Here it is understood, that entries of γ and Λ corresponding to the
non–fixed moments are set equal to zero. Λ is chosen to be a symmetric matrix, Λij = Λji,
for notational convenience. The resulting free energy is

lnZ(γ,Λ) =
N

2
ln 2π − 1

2
ln det(Λ− J) +

1
2

(γ + θ)T (Λ− J)−1(γ + θ) .

The free energies for binary and Gaussian tree graphs are given in Appendix C.

4.2 EC Approximation

We can now write down the explicit expression for the free energy, eq. (19) for the model
eqs. (6) and (7) with diagonal moments using the result for the Gaussian model:

− lnZEC = −
∑

i

ln
∫
dxi ψi(xi)eγq,ixi−Λq,ix

2
i /2 +

1
2

ln det(Λs −Λq − J) (23)

−1
2

(θ + γs − γq)T (Λs −Λq − J)−1(θ + γs − γq)−
1
2

∑

i

(
ln Λs,i −

γ2
s,i

Λs,i

)

where λq and λs are chosen to make − lnZEC stationary. The lnZs(λs) term is obtained
from the general Gaussian model setting θ = 0 and J = 0.

Generating moments. Derivatives of the free energy with respect to parameters provide
a simple way for generating expectations of functions of the random variable x. We will
explain the method for the second moments 〈xixj〉 of the model defined by the factorization
eqs. (6) and (7). If we consider p(x) as a function of the parameter Jij , we get after a short
calculation

d lnZ(λ, Jij)
dJij

=
1
2
〈xixj〉 . (24)
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Here we assume that the coupling matrix J is augmented to a full matrix with the auxiliary
elements set to zero at the end. Evaluating the left hand side of eq. (24) within the EC
approximation eq. (23) and using eq. (20) yields

〈xxT 〉 − 〈x〉〈x〉T = (Λs −Λq − J)−1 . (25)

The result eq. (25) could have also obtained by computing the covariance matrix directly
from the Gaussian approximating density r(x). We have consistency between r(x) and q(x)
on the second order moments included in g(x), but for those not included, one can argue on
quite general grounds that r(x) will be more precise than q(x) (Opper and Winther, 2004).
Similarly, one may hope that higher order diagonal moments or even the entire marginal
density of variables can be well approximated using the density q(x). An application which
shows the quality of this approximation can be found in (Malzahn and Opper, 2003).

5. Algorithms

This section deals with the task of solving the EC optimization problem, that is solving
the consistency conditions eqs. (14) and (15): 〈g(x)〉q = 〈g(x)〉r = 〈g(x)〉s for the three
distributions q, r and s, eqs. (16)-(18). As already discussed in section 3, the EC free
energy is not a concave function in the parameters λq, λs and one may have to resort to
double loop approaches (Welling and Teh, 2003, Yuille, 2002, Heskes et al., 2003, Yuille and
Rangarajan, 2003). Heskes and Zoeter (2002) were the first to apply double loop algorithms
EC type of approximations. Since the double loop approaches may be slow in practice it is
also of interest to define single loop algorithms that comes with no warranty, but in many
practical cases will converge fast. A pragmatic strategy is thus to first try a single loop
algorithm and switch to a double loop when necessary. In the following we first discuss the
algorithms in general and then specialize to the model eqs. (6) and (7).

5.1 Single Loop Algorithms

The single loop approaches typically are of the form of propagation algorithms which send
“messages” back and forth between the two distributions q(x) and r(x). In each step the
“separator” or “overlap distribution” s(x)4 is updated to be consistent with either q or
r depending upon which way we are propagating. This corresponds to an Expectation
Propagation style scheme with two terms, see also Appendix D. Iteration t of the algorithm
can be sketched as follows:

1. Send messages from r to q

• Calculate separator s(x): Solve for λs: 〈g(x)〉s = µµµr(t− 1) ≡ 〈g(x)〉r(t−1)

• Update q(x): λq(t) := λs − λr(t− 1)

2. Send messages from q to r

• Calculate separator s(x): Solve for λs: 〈g(x)〉s = µµµq(t) ≡ 〈g(x)〉q(t)
4. These names are chosen that s(x) plays the same role as the separator potential in the junction tree

algorithm and as the overlap distribution in the Bethe approximation.

10
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• Update r(x): λr(t) := λs − λq(t)
r(t) and q(t) denote the distributions q and r computed with the parameters λr(t) and λq(t).
Convergence is reached when µµµr = µµµq since each parameter update ensures λr = λs − λq.
Several modifications of the above algorithm are possible. First of all a “damping factor” (or
“learning rate”) η can be introduced on both or one of the parameter updates. Secondly we
can abandon the parallel update and solve sequentially for factors containing only subsets
of parameters.

5.2 Single Loop Algorithms for Quadratic Model

In the following we will explain details of the algorithm for the quadratic model eqs. (6)
and (7) with consistency for first and second diagonal moments, corresponding to the EC
free energy eq. (23). We will also briefly sketch the algorithm for moment consistency on a
spanning tree. In appendix D we give the algorithmic recipes for a sequential algorithm for
the factorized approximation and a parallel algorithm for tree approximation. These are
simple, fast and quite reliable.

For the diagonal choice of g(x), s(x) is simply the product of univariate Gaussians:
s(x) =

∏
i si(xi) and si(xi) ∝ exp

(
γs,ixi − Λs,ix2

i /2
)
. Solving for s(x) in terms of the

moments of q and r, respectively, corresponds to a simple marginal moment matching to
the univariate Gaussian ∝ exp

(−(xi −mi)2/2vi
)
: γs,i := mi/vi and Λs,i := 1/vi. r(x) is a

multi-variate Gaussian with covariance, eq. (25), χr ≡ (Λr − J)−1 and mean mr = χrγr.
Matching the moments with r(x) gives simply mi := mr,i and vi := χr,ii. The most
expensive operation of the algorithm is the calculation of the moments of r(x) which is
O(N3) because χr = (Λr − J)−1 has to be recalculated after each update of λr. q(x) is
a factorized non-Gaussian distribution for which we have to obtain the mean and variance
and match as above. In the diagonal case, it is natural to define the factor Ole, explain
used in EP in terms of the parameters associated with each variable.

The spanning tree algorithm is only slightly more complicated. Now s(x) is a Gaussian
distribution on a spanning tree. Solving for λs can be performed in linear complexity in
N using the tree decomposition of the free energy, see appendix C. r(x) is still a full
multivariate Gaussian and inferring the moments of the spanning tree distribution q(x) is
O(N) using message passing (MacKay, 2003).

5.3 Double Loop Algorithm

Since the EC free energy − lnZEC(λq,λs) is concave in λq, we can attempt a solution of the
stationarity problem eqs. (14) and (15), by first solving the concave maximization problem

F (λs) ≡ max
λq

{− lnZEC(λq,λs)
}

= max
λq
{− lnZq(λq)− lnZr(λs − λq)}+ lnZs(λs) (26)

and subsequently finding a solution to the equation

∂F (λs)
∂λs

= 0 . (27)

Since F (λs) is in general neither a convex nor a concave function, there might be many
solutions to this equation.

11



Opper and Winther

The double loop algorithm aims at finding a solution iteratively. It starts with an
arbitrary admissible value λs(0) and iterates two elementary procedures for updating λs
and λq aiming at matching the moments between the distribution q, r and s. Assume that
at iteration step t we have λs = λs(t), we

1. Solve the concave maximization problem eq. (26) yielding the update

λq(t) = argmax
λq

{− lnZEC(λq,λs(t))
}
. (28)

With this update, we achieve equality of the moments

µµµ(t) ≡ 〈g(x)〉q(t) = 〈g(x)〉r(t) . (29)

2. Update λs as
λs(t+ 1) = argmin

λs

{−λTs µµµ(t) + lnZs(λs)
}

(30)

which is a convex minimization problem. This yields 〈g(x)〉s(t+1) = µµµ(t).

To discuss convergence of these iterations, we prove that F (λs(t)) for t = 0, 1, 2, . . . is a
nondecreasing sequence:

F (λs(t)) = max
λq ,λr

{− lnZq(λq)− lnZr(λr) + lnZs(λs) + (λq + λr − λs(t))Tµµµ(t)
}

(31)

≥ max
λq ,λr

{
− lnZq(λq)− lnZr(λr) + (λq + λr)Tµµµ(t) + min

λs

(−λTs µµµ(t) + lnZs(λs)
)}

= max
λq ,λr

{− lnZq(λq)− lnZr(λr) + lnZs(λs(t+ 1)) + (λq + λr − λs(t+ 1))µµµ(t)}

≥ max
λq ,λr|λq+λr=λs(t+1)

{− lnZq(λq)− lnZr(λr)}+ lnZs(λs(t+ 1))

= F (λs(t+ 1)) .

The first equality follows from the fact that λq +λr −λs(t) = 0 and that at the maximum
we have matching moments µµµ(t) for the q and r distributions. The next inequality is
true because we do not increase −λTs µµµ(t) + lnZs(λs) by minimizing. The next equality
implements the definition of eq. (30). The final inequality follows because we maximize
over a restricted set. Hence, when F is bounded from below we will get convergence.

Hence, the double loop algorithm attempts in fact a minimization of F (λs). It is not
clear a priori why we should search for a minimum rather than a for a maximum or any
other critical value. However, a reformulation of the EC approach given in Appendix B
shows that we can interpret F (λs) as an upper bound on an approximation to the so–called
Gibbs free energy which is the Lagrange dual to the Helmholtz free energy from which the
desired moments are derived by minimization.

5.4 Double Loop Algorithms for the Quadratic Model

The outer loop optimization problem (step 2 above) for λs is identical to the one for the
single loop algorithm. The concave optimization problem of the inner loop for L(λq) ≡

12
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− lnZq(λq) − lnZr(λs(t) − λq) (step 1 above) can be solved by standard techniques from
convex optimization (Vandenberghe et al., 1998, Boyd and Vandenberghe, 2004). Here we
will describe a sequential approach that exploits the fact that updating only one element in
Λr = Λs(t)−Λq (or in spanning tree case a two-by-two sub-matrix) is a rank one (or rank
two) update of χr = (Λr − J)−1 that can be performed in O(N2).

Specializing to the quadratic model with diagonal g(x) we have to maximize

L(λq) = −
∑

i

ln
∫
dxiψi(xi) exp

[
γq,ixi − 1

2
Λq,ix2

i

]

− ln
∫
dx exp

[
−1

2
xT (Λs(t)−Λq − J)x + (γs(t)− γq)Tx

]

with respect to γq and Λq. We aim at a sequential approach where we optimize the variables
for one element in x, say the ith. We can isolate γq,i and Λq,i in the Gaussian term to obtain
a reduced optimization problem:

L(γq,i,Λq,i) = const +
1
2

ln[1− vr,i(Λ0
q,i − Λq,i)]−

(γ0
q,i − γq,i −mr,i/vr,i)2

2(1/vr,i + Λ0
q,i − Λq,i)

− log
∫
dxiψi(xi) exp

[
γq,ixi +

1
2

Λq,ix2
i

]
, (32)

where superscript 0 denotes current values of the parameters and we have set mr,i = 〈xi〉r =
[(Λ0

r−J)−1γ0
r]i and vr,i = 〈x2

i 〉r−m2
r,i = [(Λ0

r,i−J)−1]ii, with λ0
r = λs(t)−λ0

q . Introducing
the corresponding two first moments for qi(xi)

mq,i = mq,i(γq,i,Λq,i) = 〈xi〉q =
1
Zqi

∫
dxi xi ψi(xi) exp

[
γq,ixi − 1

2
Λq,ix2

i

]
(33)

vq,i = vq,i(γq,i,Λq,i) = 〈x2
i 〉q −m2

q,i (34)

we can write the stationarity condition for γq,i and Λq,i as:

γq,i +
mq,i

vq,i
= γ0

q,i +
mr,i

vr,i
(35)

Λq,i +
1
vq,i

= Λ0
q,i +

1
vr,i

(36)

collecting variable terms and constant terms on the lhs and rhs, respectively. These two
equations can be solved very fast with a Newton method. For binary variables the equations
decouple since mq,i = tanh(γq,i) and vq,i = 1−m2

q,i and we are left with a one dimensional
problem.

Typically, solving these two non-linear equations are not the most computationally
expensive steps because after these have been solved, the first two moments of the r-
distribution have to be recalculated. This final step can be performed using the matrix
inversion lemma (or Sherman-Morrison formula) to reduce the computation to O(N2). The
matrix of second moments χr = (Λr − J)−1 is thus updated as:

χr := χr −
∆Λr,i

1 + ∆Λr,i [χr]ii
[χr]i[χr]

T
i , (37)

13
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where ∆Λr,i = −∆Λq,i = −(Λq,i − Λ0
q,i) = 1

vq,i
− 1

vr,i
and [χr]i is defined to be the ith row

in χr.
Note that the solution for Λq,i is a coordinate ascent solution which has the nice property

that if we initialize Λq,i with an admissible value, i.e. with χr positive semi-definite then
with this update χr will stay positive definite since the objective has an infinite barrier at
detχr = 0.

6. Simulations

In this section we apply expectation consistent inference (EC) to the model of pair-wise con-
nected Ising variables introduced in Section 4. We consider two versions of EC: “factorized”
with g(x) containing all first and only diagonal second moments and the structured “span-
ning tree” version. The tree is chosen as a maximum spanning tree, where the maximum is
defined over |Jij |, i.e. choose as next pair of nodes to link, the (so far unlinked) pair with
strongest absolute coupling |Jij | that will not cause a loop in the graph. The free energy
is optimized with the parallel single loop algorithm described in section 5 and appendix
D. Whenever non-convergence is encountered we switch to the double loop algorithm. We
compare the performance of the two EC approximations with two other approaches for two
different set-ups that have previously been used as benchmarks in the literature5.

In the first set of simulations we compare with the Bethe and Kikuchi approaches (Heskes
et al., 2003). We consider N = 10 and choose constant “external fields” (observations) θi =
θ = 0.1. The “couplings” Jij are fully connected and generated independently at random
according to Jij = βwij/

√
N , the wijs are Gaussian with zero mean and unit variance.

We consider eight different scalings β = [0.10, 0.25, 0.50, 0.75, 1.00, 1.50, 2.00, 10.00]. and
compare one-variable marginals p(xi) = 1+ximi

2 and the two-variable marginals p(xi, xj) =
xixjCij

4 +p(xi)p(xj) where Cij is the covariance Cij = 〈xixj〉−〈xi〉〈xj〉. For EC, Cij is given
by eq. (25). In figure 1 we plot maximum absolute deviation (MAD) of our results from the
exact marginals for different scaling parameters:

MAD1 = max
i
|p(xi = 1)− p(xi = 1|Method)|

MAD2 = max
i,j

max
xi=±1,xj=±1

|p(xi, xj)− p(xi, xj |Method)|

In figure 2 we compare estimates of the free energy. The results show that the simple
factorized EC approach gives performance similar to (and in many case better than) the
structured Bethe and Kikuchi approximations. The EC tree version is almost always better
than the other approximations. The Kikuchi approximation is not uniquely defined, but
depends upon the choice of “cluster-structure”. Different types of structures can give rise to
quite different performance (Minka and Qi, 2004). The results given above is thus just to be
taken as one realization of the Kikuchi method where the clusters are taken as all variable
triplets. We expect the Kikuchi approximation to yield better results (probably better than
EC in some cases) for an appropriate choice of sub-graphs, e.g. triangles forming a star for
fully connected models and all squares for grids (Yedidia et al., 2001, Minka and Qi, 2004).
EC can also be improved beyond trees as discussed in the Conclusion.

5. All results and programs are available from the authors.

14



Expectation Consistent Approximate Inference

The second test is the set-up proposed by Wainwright and Jordan (2003, 2005). The
N = 16 nodes are either fully connected or connected to nearest neighbors in a 4-by-4
grid. The external field (observation) strengths θi are drawn from a uniform distribution
θi ∼ U [−dobs, dobs] with dobs = 0.25. Three types of coupling strength statistics are con-
sidered: repulsive (anti-ferromagnetic) Jij ∼ U [−2dcoup, 0], mixed Jij ∼ U [−dcoup,+dcoup]
and attractive (ferromagnetic) Jij ∼ U [0,+2dcoup] with dcoup > 0. We compute the average
absolute deviation on the marginals:

AAD =
1
N

∑

i

|p(xi = 1)− p(xi = 1|method)|

over 100 trials testing the following methods: SP = sum-product (aka loopy belief propaga-
tion (BP) or Bethe approximation) and LD = log-determinant maximization (Wainwright
and Jordan, 2003, 2005), EC factorized and EC tree. Results for SP and LD are taken
from (Wainwright and Jordan, 2003). Note that instances where SP failed to converge
were excluded from the results. A fact that is likely to bias the results in favor of SP. The
results are summarized in table 1. The Bethe approximation always gives inferior results
compared to EC. This might be a bit surprising for the sparsely connected grids. LD is
a robust method which however seems to be limited in it’s achievable precision. EC tree
is uniformly superior to all other approaches. It would be interesting to compare to the
Kikuchi approximation which is known to give good results on grids.

A few comments about complexity, speed and rates of convergence: Both EC algorithms
are O(N3). For the N = 16 simulations typical wall clock times were 0.5 sec. for exact
computation, half of that for the single-loop tree and one-tenth for the factorized single-
loop. Convergence is defined to be when ||〈g(x)〉q − 〈g(x)〉r||2 is below 10−12. Double loop
algorithms typically were somewhat slower (1-2 sec.) because a lot of outer loop iterations
were required. This indicates that the bound optimized in the inner loop is very conservative
for these binary problems. For the easy problems (small dcoup) all approaches converged.
For the harder problems the factorized EP-style algorithms typically converged in 80-90 %
of the cases. A greedy single-loop variant of the sequential double-loop algorithm, where
the outer loop update is performed after every inner loop update, converged more often
without being much slower than the EP-style algorithm. We treated the grid as fully
connected system not exploiting the structure of which makes it possible to calculate the
covariance on the links by message passing in O(N2) instead of O(N3) as when treated as
a fully connected system.

7. Conclusion and Outlook

We have introduced a novel method for approximate inference which tries to overcome lim-
itations of previous approximations in dealing with the correlations of random variables.
While we have demonstrated its accuracy in this paper only for a model with binary ele-
ments, it can also be applied to models with continuous random variables or hybrid models
with both discrete and continuous variables (i.e. cases where further approximations are
needed in order to apply Bethe/Kikuchi approaches).

We expect that our method becomes most powerful when certain tractable substructures
of variables with strong dependencies can be identified in a model. Our approach would then
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Figure 1: Maximal absolute deviation (MAD) for one- (left) and two-
variable (right) marginals. EC factorized: upper full line (blue),
EC tree: lower full line (blue), Bethe: dashed line (green) and
Kikuchi: dash-dotted line (red).
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Figure 2: Left plot: free energy exact: stars, EC factorized and tree: full
lines virtually on top on each others (blue), Bethe: dashed line
(green) and Kikuchi: dash-dotted (red). Right: Absolute devi-
ation (AD) for the three approximations, same line type (and
color) as above. Lower full line is for the EC tree approxima-
tion.

allow us to deal well with the weaker dependencies between substructures. Better heuristics
for determining the choice of substructures will also be useful for improving the performance
(Minka and Qi, 2004). Consider inference on the square grid as a problem where one can
introduce tractable substructures without getting a very large increase in complexity. The
spanning tree treats approximately half of the links exactly, whereas covering the grid with
strips of width L would treat a fraction of 1− 1/2L of the links exactly at a computational
increase of a factor of 2L−1 compared to the spanning tree for the binary part, but keeping
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Table 1: The average one-norm error on marginals for the Wainwright-Jordan set-up.

Problem type Method
SP LD EC factorized EC tree

Graph Coupling dcoup Mean Mean Mean ± std Med Max Mean ± std Med Max
Repulsive 0.25 0.037 0.020 0.003 ± 0.002 0.002 0.00 0.0017 ± 0.0011 0.001 0.01
Repulsive 0.50 0.071 0.018 0.031 ± 0.045 0.016 0.20 0.0143 ± 0.0141 0.010 0.10

Full Mixed 0.25 0.004 0.020 0.002 ± 0.002 0.002 0.00 0.0013 ± 0.0008 0.001 0.00
Mixed 0.50 0.055 0.021 0.022 ± 0.030 0.013 0.17 0.0151 ± 0.0204 0.010 0.16

Attractive 0.06 0.024 0.027 0.004 ± 0.002 0.004 0.01 0.0025 ± 0.0014 0.002 0.01
Attractive 0.12 0.435 0.033 0.117 ± 0.090 0.112 0.30 0.0211 ± 0.0307 0.012 0.16
Repulsive 1.0 0.294 0.047 0.153 ± 0.123 0.124 0.58 0.0031 ± 0.0021 0.003 0.01
Repulsive 2.0 0.342 0.041 0.198 ± 0.135 0.214 0.49 0.0021 ± 0.0010 0.002 0.01

Grid Mixed 1.0 0.014 0.016 0.011 ± 0.010 0.009 0.08 0.0018 ± 0.0011 0.002 0.01
Mixed 2.0 0.095 0.038 0.082 ± 0.081 0.034 0.32 0.0068 ± 0.0053 0.005 0.03

Attractive 1.0 0.440 0.047 0.125 ± 0.104 0.068 0.36 0.0028 ± 0.0018 0.002 0.01
Attractive 2.0 0.520 0.042 0.177 ± 0.125 0.198 0.41 0.0002 ± 0.0004 0.000 0.00

the complexity of the most computationally expensive part of the inference—calculating
the moments of the Gaussian part—unchanged.

A generalization of our method to treat graphical models beyond pair-wise interaction
may be obtained by iterating the approximation. This is useful in cases, where an initial
three term approximation − lnZEC = − lnZq − lnZr + lnZs still contains non-tractable
component free energies. These individual terms can be further approximated using the EC
approach. We can show that in such a way a variety of other relevant types of graphical
models beyond the pair-wise interaction case (e.g. on certain directed graphs and mixture
models) become tractable with our method.

For practical applicability of approximate inference techniques improvements in the
numerical implementation of the free energy minimization are crucial. In the simulations
in this paper we used both single and double loop algorithms. The single loop algorithms
often converged very fast, i.e. in O(10) iterations to achieve a solution close to the machine
precision. However, whether convergence could be achieved was instance dependent and
depended upon set-up details like parallel/sequential update and learning rate. It seems that
there is a lot of room for improvement here and theoretical analysis of convergence properties
of algorithms will be important in this respect (Heskes and Zoeter, 2002). In the guaranteed
convergent double loop approaches the free energy minimization is formulated in terms of a
sequence of convex optimization problems. This allows for the application of theoretically
well-founded and powerful techniques of convex optimization (Boyd and Vandenberghe,
2004). Unfortunately, for the problems considered here, convergence is typically quite slow
because we have to solve large number of the convex problems. This again underlines the
need for further algorithmic development.

There are a couple of ways to improve on the EC approximation itself. One may calculate
corrections to the EC free energy and marginals by a perturbative analysis using cumulant
expansions of the approximating distributions. This should also enable a kind of sanity check
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of the theory, i.e. when the corrections are predicted to be comparable to original prediction,
it is a signal that the approximation is breaking down. Another possible improvement comes
from the physics of disordered system where methods have be devised to analyze non-ergodic
free energy landscapes (Mézard et al., 1987). This will allow to make improved estimates
of the free energy and marginals for e.g. binary variables with high coupling strengths.
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Appendix A. Applications

In this appendix we give list of of previous applications of the ADATAP method which is a
special case of the EC approach to models with the factorization eqs. (6) and (7).

Table 2: Examples of applications of simplest version of EC, ADATAP. The references are
a: (Fabricius and Winther, 2004), b: (Opper and Winther, 1999, 2000, Minka,
2001a,b), c: (Cornford et al., 2004), d: (Malzahn and Opper, 2003, 2004), e:
(Hojen-Sorensen et al., 2002) and f: (Quiñonero-Candela and Winther, 2003).

Application meaning of xi type of xi Refs.
Channel Division Multiple Access (CDMA) source symbol Ising a

Gaussian Processes (GP) classification latent variable continuous b
GP for wind retrieval wind vector continuous c
Bootstrap estimates latent variable continuous d

Independent component analysis (ICA) source variable arbitrary e
Sparse kernel method latent variable continuous f

Appendix B. Dual Formulation

B.1 Gibbs Free Energies and Two Stage Inference

In this section we present an alternative route to free energy approximations using a two
stage variational formulation. In this framework, one starts with the well known fact that
the true, intractable distribution p(x) = f(x)

Z is implicitly characterized as the solution of
an optimization problem defined through the relative entropy or KL divergence

KL(q, p) =
∫
dx q(x) ln

q(x)
p(x)

(38)

between p and other trial or approximate distributions q. We introduce the Gibbs free energy
(GFE) approach, (see e.g. Roepstorff, 1994, Csató et al., 2002, Wainwright and Jordan, 2003,
2005) which splits this optimization into a two stage process. One first constrains the trial
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distributions q by fixing the values of the generalized moments 〈g(x)〉q. We define the Gibbs
free energy G(µµµ) as

G(µµµ) = min
q
{KL(q, p) | 〈g(x)〉q = µµµ} − lnZ . (39)

The term lnZ has been subtracted to make the resulting expression independent of the
intractable partition function Z.

In a second step, the moments of the distribution and also the partition function Z are
found within the same approach by relaxing the constraints and further minimizing G(µµµ)
with respect to the µµµ.

min
µµµ
G(µµµ) = − lnZ (40)

〈g(x)〉 = argmin
µµµ

G(µµµ) . (41)

A variational bound approximation is recovered by restricting the minimization in eq. (39)
to a tractable family of densities q. Note that the values for µµµ in the definition of G(µµµ)
cannot be chosen arbitrarily. For a detailed discussion of this problem, see (Wainwright
and Jordan, 2003, 2005). We will not discuss these constraints here, but leave this, when
necessary, to the discussion of concrete models.

Gibbs free energy and duality. The optimization problem eq. (39) is solved by the
density given by

q(x) =
f(x)
Z(λ)

exp
(
λTg(x)

)
. (42)

λ = λ(µµµ) is the vector of Lagrange parameters chosen such that the moment conditions
〈g(x)〉q = µµµ are fulfilled, i.e. λ satisfies

∂ lnZ(λ)
∂λ

= µµµ . (43)

In the following, it should be clear from the context when λ is a free variable or is to be
determined from eq. (43). Inserting the optimizing distribution eq. (42) into the definition
of the Gibbs free energy eq. (39), we get the simpler expression:

G(µµµ) = − lnZ(λ(µµµ)) + λT (µµµ)µµµ = max
λ

{− lnZ(λ) + λTµµµ
}
. (44)

showing that G(µµµ) is the Lagrangian dual of lnZ(λ).

Derivatives with respect to parameters. We will use the following result about
the derivative of G with respect to a parameter t in the density. Using the notation
p(x|t) = f(x,t)

Zt
(which should not be confused with a conditional probability), we calcu-

late the derivative of G(µµµ, t) using (43) and (44) as for fixed µµµ:

dG(µµµ, t)
dt

= −∂ lnZ(λ, t)
∂t

+
(
µµµ− ∂ lnZ(λ, t)

∂λ

)
dλT

dt
= −∂ lnZ(λ, t)

∂t
, (45)

where Z(λ, t) =
∫
dx f(x, t) exp

(
λTg(x)

)
.
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B.2 An Interpolation Representation of Free Energies

If the density p factors into a tractable fq and an intractable part fr, according to eq. (2),
we can construct a representation of the Gibbs free energy which also separates into two
corresponding parts. This is done by treating fr(x) as a perturbation which is smoothly
turned on using a parameter 0 ≤ t ≤ 1. We define fr(x, t) to be a smooth interpolation
between the trivial fr(x, t = 0) = 1 and the “full” intractable fr(x, t = 1) = fr(x). The
most common choice is to set fr(x, t) = [fr(x)]t, but a more complicated construction can be
necessary, when fr contains δ-distributions, see appendix E. However, we will see later, that
an explicit construction of the interpolation will not be necessary for our approximation.

Next, we define the interpolating density and the associated optimizing distribution for
the Gibbs free energy

p(x|t) =
1
Zt
fq(x)fr(x, t) (46)

q(x|t) =
1

Zq(λ, t)
fq(x)fr(x, t) exp

(
λTg(x)

)
, (47)

where
Zq(λ, t) =

∫
dx fq(x)fr(x, t) exp

(
λTg(x)

)
(48)

and the corresponding free energy Gq(µµµ, t) = maxλ
{− lnZq(λ, t) + λTµµµ

}
. For later conve-

nience, we have given a subscript to G and lnZ to indicate which approximating distribution
is being used. We can now use the following simple identity for the free energy G(µµµ, t)

G(µµµ, 1)−G(µµµ, 0) =
∫ 1

0
dt
dG(µµµ, t)

dt
(49)

to relate the Gibbs free energy of the intractable model G(µµµ) = G(µµµ, t = 1) and tractable
model G(µµµ, t = 0). Using eq. (20), we get

dG(µµµ, t)
dt

= −∂ lnZ(λ, t)
∂t

= −
〈
d ln fr(x, t)

dt

〉

q(x|t)
. (50)

While this representation can be used to re-derive a variational bound approximation (see
Appendix F), we will next re-derive a dual representation of the EC free energy by making
an approximation similar in spirit to the one used in Section 13. We again assume that
besides the family of distributions eq. (4), there is a second family which can be used as an
approximation to the distribution eq. (46). It is defined by

r(x|t) =
1

Zr(λ, t)
fr(x, t) exp

(
λTg(x)

)
, (51)

where, as before the parameters λ are chosen in such a way as to guarantee consistency for
the expectations of g, i.e. 〈g(x)〉r(x|t) = µµµ and

Zr(λ, t) =
∫
dx fr(x, t) exp

(
λTg(x)

)
. (52)
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Obviously, r(x|t) defines another Gibbs free energy which in its dual representation eq. (44)
is given by

Gr(µµµ, t) = max
λ

{− lnZr(λ, t) + λTµµµ
}
. (53)

Using the density r(x|t) to treat the integral in eq. (49), we make the approximation

∫ 1

0
dt

〈
d ln fr(x, t)

dt

〉

q(x|t)
≈
∫ 1

0
dt

〈
d ln fr(x, t)

dt

〉

r(x|t)
. (54)

The fact that both types of densities eqs. (47) and (51) contain the same exponential factor
fr(x, t) exp

(
λTg(x)

)
allows us to carry out the integral over the interaction strength t on

the right hand side of eq. (54) in closed form without specifying the interpolating term
fr(x, t) explicitly. We simply use the relations eqs. (49) and (50) again, but this time for
the free energy eq. (53) to get

∫ 1

0
dt

〈
d ln fr(x, t)

dt

〉

r(x|t)
= Gr(µµµ, 1)−Gr(µµµ, 0) . (55)

Using the approximation eq. (54) and the two exact relation eqs. (49) for q and r we arrive
at the expectation consistent (EC) approximation:

Gq(µµµ, 1) ≈ Gq(µµµ, 0) +Gr(µµµ, 1)−Gr(µµµ, 0) ≡ GEC(µµµ) . (56)

Recovering the EC free energy (19) Using the duality expression for the free energies
eq. (44), the free energy approximation can be written as

GEC(µµµ) = Gq(µµµ) +Gr(µµµ)−Gs(µµµ) (57)
= max

λq ,λr
min
λs

{− lnZq(λq)− lnZr(λr) + lnZs(λs) +µµµT (λq + λr − λs)
}
,

where we have defined Gq(µµµ) = Gq(µµµ, 0), Gr(µµµ) = Gr(µµµ, 1) and Gs(µµµ) = Gr(µµµ, 0). To
obtain the corresponding approximation for the Helmholtz free energy − lnZ, we should
minimize this expression with respect to µµµ. Any local minimum will be characterized by the
vanishing of the partial derivative with respect to µµµ. This yields the following constraint
on the Lagrange parameters

λq + λr − λs = 0 , (58)

which can be used to eliminate, say λr and we recover eq. (19).

Recovering the double loop algorithm. Since the free energy given by eq. (44) is a
convex function of µµµ, we can see that the EC approximation eq. (56) appears directly as
a sum of a convex (the first two terms) and a concave function of µµµ. Hence, the approx-
imation is not guaranteed to be convex, and multiple local minima and other stationary
points may occur. However, this natural split allows us to develop a double loop algo-
rithm similar to Yuille (2002), Heskes et al. (2003), which is guaranteed to converge to at
least one of the stationary points, provided that the EC free energy is bounded from be-
low. Assume that at iteration step t, the current approximation to the minimizer µµµ(t),
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such an algorithm first upper bounds the concave function −Gs(µµµ) by the linear function
− (µµµ−µµµ(t))T ∂Gs(µµµ)

∂µµµ

∣∣∣
µµµ=µµµ(t)

.

In terms of the corresponding Lagrange-parameter λs(t) = ∂Gs(µµµ)
∂µµµ

∣∣∣
µµµ=µµµ(t)

, this yields

GEC(µµµ) ≤ Gq(µµµ) +Gr(µµµ)− (µµµ−µµµ(t))T λs(t)
= max

λq ,λr

{− lnZq(λq)− lnZr(λr) +µµµT (λq + λr) + lnZs(λs(t))
} ≡ GEC

t (µµµ)

Minimizing GEC
t (µµµ) with respect to µµµ, we immediately get

min
µµµ
GEC
t (µµµ) = max

λq
{− lnZq(λq)− lnZr(λs − λq)}+ lnZs(λs(t)) = F (λs(t)) , (59)

where F (λs(t)) was introduced in eq. (26). The new approximation is computed as

µµµ(t+ 1) = 〈g(x)〉q(t+1) .

Hence, this double loop procedure is equivalent to the one defined in Section 5, demon-
strating that the sequence F (λs(t)) yields nondecreasing upper bounds to the minimal EC
Gibbs free energy.

Appendix C. Tree-Connected Graphs

For the EC tree approximation we will need to make inference on tree-connected graphs.
To handle a problem with binary variables both binary and Gaussian distributed variables
on a tree will be needed. We will write the model as

p(x) =
1
Z

∏

i

ψi(xi) exp
(
−1

2
xTΛx + γTx

)
,

where ψi(xi) = δ(xi − 1) + δ(xi + 1) for binary and ψi(xi) = 1 for Gaussian. Assuming
that Λ defines a tree one can express the free energy in terms of single- and two-node free
energies (Yedidia et al., 2001):

− lnZ(λ) = −
∑

(ij)∈G
lnZij(λ(ij))−

∑

i

(1− ni) lnZi(λ(i)) , (60)

where λ(ij) =
(
γ

(ij)
i , γ

(ij)
j ,Λ(ij)

ii ,Λ(ij)
ij ,Λ(ij)

jj

)
are the parameters associated with the moments

g(ij) =
(
xi, xj ,−x2

i
2 ,−xixj ,−

x2
j

2

)
and ni the number of links to node i. The two-node

partition function Zij is given by

Zij(λ(ij)) =
∫
dxidxjψi(xi)ψj(xj)eγixi+γjxj−Λijxixj−Λiix

2
i /2−Λjjx

2
j/2 . (61)

The one-node partition function is defined in a similar fashion.
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The Gibbs free energy G(µµµ) = maxλ{− lnZ(λ) +λTµµµ} can be written in terms of one-
and two-node Gibbs free energies:

G(µµµ) =
∑

(ij)∈G
lnGij(µµµ(ij))−

∑

i

(1− ni)Gi(µµµ(i))

Gij(µµµ(ij)) = max
λ(ij)
{− lnZij(λ(ij)) + (λ(ij))Tµµµ(ij)} , (62)

where µµµ(ij) = 〈g(ij)(x)〉. We can write λ =
∑

(ij)∈G λ
(ij) −∑i(1− ni)λ(i), where λ(ij) here

should be understood as a vector of the same length as g having non-zero elements for
moments defined for the pair (ij). By solving the max condition we can write the Lagrange
parameters in terms of the mean values mi = 〈xi〉 and covariances χij = 〈xixj〉 −mimj .
This will be useful when we derive algorithms for optimizing the free energy in section 5
where we need to solve for λ in terms of µµµ. For binary variables we get:

γ
(i)
i = tanh−1(mi)

γ
(ij)
i =

1
2

tanh−1

(
mi +mj

1 + 〈xixj〉
)

+
1
2

tanh−1

(
mi −mj

1− 〈xixj〉
)

γ
(ij)
j =

1
2

tanh−1

(
mi +mj

1 + 〈xixj〉
)

+
1
2

tanh−1

(
mj −mi

1− 〈xixj〉
)

Λ(ij)
ij = −1

2
tanh−1

(〈xixj〉+mi

1 +mj

)
− 1

2
tanh−1

(〈xixj〉 −mi

1−mj

)

and for Gaussian defining m(ij) =
(
mi

mj

)
and χ(ij) ≡

(
χii χij
χji χjj

)
:

γ
(i)
i = mi/χii and Λ(i)

i = 1/χii
γ(ij) = (χ(ij))−1m(ij) and Λ(ij) = (χ(ij))−1 .

Finally, we will also need to make inference about the mean values and covariances
on the tree for the binary variables. This can be done effectively by message passing on
the tree. The message from link (ij) to node i denoted by r(ij)→i can be obtained by the
following recursion (MacKay, 2003)

r(ij)→i = tanh(−Λij) tanh(θj\i)

θj\i = θj +
∑

k,(jk)∈G,(jk)6=(ij)

r(jk)→j .

The recursion converges in one collect and one distribute messages sweep (to/from an ar-
bitrarily chosen root node). Inference is linear because the tree contains N − 1 links. The
mean values and correlations are given by

mi = tanh


θi +

∑

j,(ij)∈G
r(ij)→i




〈xixj〉 =
e−Λij cosh(θi\j + θj\i)− eΛij cosh(θi\j − θj\i)
e−Λij cosh(θi\j + θj\i) + eΛij cosh(θi\j − θj\i)

.
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Appendix D. Single Loop Algorithmic Recipes

In this appendix we give the algorithmic recipes for one sequential algorithm for the factor-
ized EC and a parallel algorithm for tree EC. The sequential algorithm is close in spirit to
Expectation Propagation with ψi(xi) and exp

(
γr,ixi − 1

2Λr,ix2
i

)
being what is called exact

and approximate factors, respectively (Minka, 2001b):

• Initialize mean and covariance of r-distribution:

mr := (Λr − J)−1(γr + θ)
χr := (Λr − J)−1

with γr = 0 and Λr set such that the covariance is positive definite.

Run sequentially over the nodes:

1. Send message from r to qi

• Calculate separator si: γs,i := mr,i/χr,ii and Λs,i := 1/χr,ii.

• Update qi: γq,i := γs,i − γr,i and Λq,i := Λs,i − Λr,i.

• Update moments of qi: mq,i := tanh(γq,i) and χq,ii = 1−m2
q,i.

2. Send message from qi to r

• Calculate separator si: γs,i := mq,i/χq,ii and Λs,i := 1/χq,ii.

• Update r: γr,i := γs,i − γq,i, ∆Λr,i := Λs,i − Λq,i − Λr,i and Λr,i := Λs,i − Λq,i.

• Update moments of r (see eq. 37):

χr := χr −
∆Λr,i

1 + ∆Λr,i [χr]ii
[χr]i[χr]

T
i

mr := χr(γr + θ) .

Convergence is reached when and if mr = mq and χr,ii = χq,ii, i = 1, . . . , N . The compu-
tational complexity of the algorithm is O(N3Nite) because each Sherman-Morrison update
is O(N2) and we make N of those in each sweep over the nodes.

The tree EC algorithm is very similar. The only difference is that it is parallel and uses
inference on a tree graph, see appendix C for details on the tree inference:

• Initialize as above.

Update:

1. Send message from r to q

• Calculate separator s: [γs,Λs] := Lagrange Gauss tree(mr, tree(χr)), where
tree() sets all non-tree elements to zero.

• Update q: γq := γs − γr and Λq := Λs −Λr.

• Update moments of q: [mq,χq] := inference binary tree(γq,Λq) will only return
non-zero elements of the covariance on the tree.
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2. Send message from q to r

• Calculate separator s: [γs,Λs] := Lagrange Gauss tree(mq,χq).

• Update r: γr := γs − γq and Λr := Λs −Λq.

• Update moments of r: χr := (Λr − J)−1 and mr := χr(γr + θ).

Convergence is reached when mq = mr and χq = tree(χr). This algorithm is alsoO(N3Nite)
because of the matrix inverse. All other operations are O(N) even though these will dom-
inate for small N . Typically when convergent both algorithms converge in Nite = O(10)
steps.

Appendix E. Interpolation Scheme for Discrete Variables

The Ising case eq. (9) can be treated by defining the bimodal density

fr(x, t) =
N∏

i=1


exp

[
− t

1−t(x
4
i − 2x2

i )
]

√
1− t




which interpolates between a constant function for t = 0 and becomes proportional to the
Dirac measures eq. (9) in the limit t → 1. Other discrete variables can be treated in a
similar fashion.

Appendix F. Re-deriving the Variational Bound Approximation

The choice fr(x, t) = t ln fr(x) for the interpolation can be used for a perturbation expansion
of the free energy G(µµµ, t) in powers of t, where at the end one sets t = 1. The lowest
nontrivial (first) order term is obtained by replacing q(x|t) by q(x|0) in eq. (50). In this
case, one obtains an approximation to the Gibbs free energy given by

G(µµµ) ≈ G(µµµ, 0)−
∫ 1

0
dt

〈
d ln fr(x, t)

dt

〉

q(x|0)

= G(µµµ, 0)− 〈ln fr(x)〉q(x|0) . (63)

For the second order term of this so-called Plefka expansion see e.g. (Plefka, 1982) and
several contributions in (Opper and Saad, 2001).

For comparison, we define a variational bound approximation, where the minimization
in eq. (39) is restricted to the family F of densities of the form eq. (4), i.e.

Gvar(µµµ) = min
q∈F
{KL(q, p) | 〈g(x)〉q = µµµ} − lnZ . (64)

Since we are minimizing in a restricted class of distributions, we obtain the upper bound
G(µµµ) ≤ Gvar(µµµ) on the Gibbs free energy. Using the fact that the density eq. (4) is exactly
of the form of q(x|0), we can show that Gvar(µµµ) coincides exactly with eq. (63).
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