3 research outputs found

    Expanding the Transfer Entropy to Identify Information Subgraphs in Complex Systems

    Get PDF
    We propose a formal expansion of the transfer entropy to put in evidence irreducible sets of variables which provide information for the future state of each assigned target. Multiplets characterized by a large contribution to the expansion are associated to informational circuits present in the system, with an informational character which can be associated to the sign of the contribution. For the sake of computational complexity, we adopt the assumption of Gaussianity and use the corresponding exact formula for the conditional mutual information. We report the application of the proposed methodology on two EEG data sets

    EXPANDING THE TRANSFER ENTROPY TO IDENTIFY INFORMATION SUBGRAPHS IN COMPLEX SYSTEMS

    No full text
    We propose a formal expansion of the transfer entropy to put in evidence irreducible sets of variables which provide information for the future state of each assigned target. Multiplets characterized by an high value will be associated to informational circuits present in the system, with an informational character (synergetic or redundant) which can be associated to the sign of the contribution. We also present preliminary results on fMRI and EEG data sets

    Expanding the transfer entropy to identify information subgraphs in complex systems

    No full text
    corecore