37,424 research outputs found

    Exosomes released from breast cancer carcinomas stimulate cell movement

    Get PDF
    For metastasis to occur cells must communicate with to their local environment to initiate growth and invasion. Exosomes have emerged as an important mediator of cell-to-cell signalling through the transfer of molecules such as mRNAs, microRNAs, and proteins between cells. Exosomes have been proposed to act as regulators of cancer progression. Here, we study the effect of exosomes on cell migration, an important step in metastasis. We performed cell migration assays, endocytosis assays, and exosome proteomic profiling on exosomes released from three breast cancer cell lines that model progressive stages of metastasis. Results from these experiments suggest: (1) exosomes promote cell migration and (2) the signal is stronger from exosomes isolated from cells with higher metastatic potentials; (3) exosomes are endocytosed at the same rate regardless of the cell type; (4) exosomes released from cells show differential enrichment of proteins with unique protein signatures of both identity and abundance. We conclude that breast cancer cells of increasing metastatic potential secrete exosomes with distinct protein signatures that proportionally increase cell movement and suggest that released exosomes could play an active role in metastasis

    tRNA Profiling of Mesenchymal Stem Cell Exosome

    Get PDF
    Background: Exosomes have great potential in regenerative medicine through the transfer of their bioactive cargos, such as RNA. tRF RNA and tiRNA are tRNAderived non-coding RNA. Here, we sought to identify the tRF/tiRNA profile in human mesenchymal stem cell (hMSC) exosomes. Methods: Bone marrow hMSCs were cultured with/without osteogenic differentiation medium and exosomes were harvested. RNA was extracted from: 1) control cells (Cell-NT); 2) control exosomes (EXO-NT); 3) differentiated cells (Cell-OM); 4) exosomes produced by differentiated cells (EXO-OM). RNA was sequenced to profile the small RNA with a focus on tRF/tiRNA. Results: tRF/tiRNA was highly enriched in hMSC exosomes. Less diversity was seen in the tRF/tiRNA profile in exosomes than that in parent cells. Selective tRF/tiRNA were packed into MSC exosomes and their profile is dependent on the cell maturation status. Conclusions: Our results suggest that tRF/tiRNA may play a role in mediating the function of exosomes in tissue regeneration

    Plasma exosomes from children with juvenile dermatomyositis are taken up by human aortic endothelial cells and are associated with altered gene expression in those cells

    Get PDF
    BACKGROUND: The pathology of juvenile dermatomyositis (JDM) is characterized by prominent vessel wall and perivascular inflammation. This feature of the disease has remained unexplained and under-investigated. We have hypothesized that plasma exosomes, which play an important role in inter-cellular communication, may play a role in the vascular injury associated with JDM. OBJECTIVE: To characterize the circulating exosomes of children with JDM and determine whether the small RNA cargoes within those exosomes are capable of altering transcriptional programs within endothelial cells. DESIGN/METHODS: We purified exosomes from plasma samples of children with active, untreated JDM (n = 6) and healthy controls (n = 9). We characterized the small RNA cargoes in JDM and control exosomes by RNA sequencing using the Illumina HiSeq 2500 platform. We then incubated isolated exosomes from healthy controls and children with JDM with cultured human aortic endothelial cells (HAEC) for 24 h. Fluorescence microscopy was used to confirm that both control and JDM exosomes were taken up by HAEC. RNA was then purified from HAEC that had been incubated with either control or JDM exosomes and sequenced on the Illumina platform. Differential expression of mRNAs from HAEC incubated with control or JDM exosomes was ascertained using standard computational methods. Finally, we assessed the degree to which differential gene expression in HAEC could be attributed to the different small RNA cargoes in JDM vs control exosomes using conventional and novel analytic methods. RESULTS: We identified 10 small RNA molecules that showed differential abundance when we compared JDM and healthy control exosomes. Fluorescence microscopy of labeled exosomes confirmed that both JDM and control exosomes were taken up by HAEC. Differential gene expression analysis revealed 59 genes that showed differential expression between HAEC incubated with JDM exosomes vs HAEC incubated with exosomes from controls. Statistical analysis of gene expression data demonstrated that multiple miRNAs exerted transcriptional control on multiple genes with HAEC. CONCLUSIONS: Plasma exosomes from children with active, untreated JDM are taken up by HAEC and are associated with alterations in gene expression in those cells. These findings provide new insight into potential mechanisms leading to the targeting of vascular tissue by the immune system in JDM

    Exosomes from Human Adipose Tissue-Derived Mesenchymal Stem Cells Promote Epidermal Barrier Repair by Inducing de Novo Synthesis of Ceramides in Atopic Dermatitis.

    Get PDF
    Atopic dermatitis (AD) is a multifactorial, heterogeneous disease associated with epidermal barrier disruption and intense systemic inflammation. Previously, we showed that exosomes derived from human adipose tissue-derived mesenchymal stem cells (ASC-exosomes) attenuate AD-like symptoms by reducing multiple inflammatory cytokine levels. Here, we investigated ASC-exosomes' effects on skin barrier restoration by analyzing protein and lipid contents. We found that subcutaneous injection of ASC-exosomes in an oxazolone-induced dermatitis model remarkably reduced trans-epidermal water loss, while enhancing stratum corneum (SC) hydration and markedly decreasing the levels of inflammatory cytokines such as IL-4, IL-5, IL-13, TNF-α, IFN-γ, IL-17, and TSLP, all in a dose-dependent manner. Interestingly, ASC-exosomes induced the production of ceramides and dihydroceramides. Electron microscopic analysis revealed enhanced epidermal lamellar bodies and formation of lamellar layer at the interface of the SC and stratum granulosum with ASC-exosomes treatment. Deep RNA sequencing analysis of skin lesions demonstrated that ASC-exosomes restores the expression of genes involved in skin barrier, lipid metabolism, cell cycle, and inflammatory response in the diseased area. Collectively, our results suggest that ASC-exosomes effectively restore epidermal barrier functions in AD by facilitating the de novo synthesis of ceramides, resulting in a promising cell-free therapeutic option for treating AD

    Tumor-derived exosomes confer antigen-specific immunosuppression in a murine delayed-type hypersensitivity model

    Get PDF
    Exosomes are endosome-derived small membrane vesicles that are secreted by most cell types including tumor cells. Tumor-derived exosomes usually contain tumor antigens and have been used as a source of tumor antigens to stimulate anti-tumor immune responses. However, many reports also suggest that tumor-derived exosomes can facilitate tumor immune evasion through different mechanisms, most of which are antigen-independent. In the present study we used a mouse model of delayed-type hypersensitivity (DTH) and demonstrated that local administration of tumor-derived exosomes carrying the model antigen chicken ovalbumin (OVA) resulted in the suppression of DTH response in an antigen-specific manner. Analysis of exosome trafficking demonstrated that following local injection, tumor-derived exosomes were internalized by CD11c+ cells and transported to the draining LN. Exosome-mediated DTH suppression is associated with increased mRNA levels of TGF-β1 and IL-4 in the draining LN. The tumor-derived exosomes examined were also found to inhibit DC maturation. Taken together, our results suggest a role for tumor-derived exosomes in inducing tumor antigen-specific immunosuppression, possibly by modulating the function of APCs. © 2011 Yang et al

    Acidic microenvironment plays a key role in human melanoma progression through a sustained exosome mediated transfer of clinically relevant metastatic molecules

    Get PDF
    Background: Microenvironment cues involved in melanoma progression are largely unknown. Melanoma is highly influenced in its aggressive phenotype by the changes it determinates in its microenvironment, such as pH decrease, in turn influencing cancer cell invasiveness, progression and tissue remodelling through an abundant secretion of exosomes, dictating cancer strategy to the whole host. A role of exosomes in driving melanoma progression under microenvironmental acidity was never described. Methods: We studied four differently staged human melanoma lines, reflecting melanoma progression, under microenvironmental acidic pHs pressure ranging between pH 6.0-6.7. To estimate exosome secretion as a function of tumor stage and environmental pH, we applied a technique to generate native fluorescent exosomes characterized by vesicles integrity, size, density, markers expression, and quantifiable by direct FACS analysis. Functional roles of exosomes were tested in migration and invasion tests. Then we performed a comparative proteomic analysis of acid versus control exosomes to elucidate a specific signature involved in melanoma progression. Results: We found that metastatic melanoma secretes a higher exosome amount than primary melanoma, and that acidic pH increases exosome secretion when melanoma is in an intermediate stage, i.e. metastatic non-invasive. We were thus able to show that acidic pH influences the intercellular cross-talk mediated by exosomes. In fact when exposed to exosomes produced in an acidic medium, pH naïve melanoma cells acquire migratory and invasive capacities likely due to transfer of metastatic exosomal proteins, favoring cell motility and angiogenesis. A Prognoscan-based meta-analysis study of proteins enriched in acidic exosomes, identified 11 genes (HRAS, GANAB, CFL2, HSP90B1, HSP90AB1, GSN, HSPA1L, NRAS, HSPA5, TIMP3, HYOU1), significantly correlating with poor prognosis, whose high expression was in part confirmed in bioptic samples of lymph node metastases. Conclusions: A crucial step of melanoma progression does occur at melanoma intermediate -stage, when extracellular acidic pH induces an abundant release and intra-tumoral uptake of exosomes. Such exosomes are endowed with pro-invasive molecules of clinical relevance, which may provide a signature of melanoma advancement
    • …
    corecore