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ABSTRACT 
 

 Exosomes are naturally secreted nanovesicles derived from mammalian cells that are used 
for intercellular communication in vivo. As a result, they can potentially be used for intracellular 
delivery of therapeutics for disease treatment. We have developed an exosome pseudotyping 
approach using vesicular stomatitis virus glycoprotein (VSVG) to produce protein chimeras that 
optimize production of modified exosomes containing protein therapeutics and facilitate effective 
delivery to their target cells. To the VSVG transmembrane scaffold, we have fused both 
fluorescent and luminescent reporters for exosome tracking/visualization and quantification of 
activity respectively. Through our design, we have shown the biogenesis of VSVG modified 
exosomes from transfected producer cells through fluorescence imaging and the production of a 
VSVG-based stable cell line. In addition, we have characterized isolated engineered exosomes 
and shown that they exhibited the correct size, distribution, and molecular markers, while 
retaining the bioactivity of their protein cargo. Furthermore, we show that our engineered 
exosomes and their protein cargo are internalized by multiple cell lines into the endosomal and 
lysosomal compartments of those cells. Lastly, these modified exosomes can confer their 
bioactive cargo, either a luminescent reporter or puromycin resistance into these target cells. In 
summary, this study presents a novel approach to exosome engineering to enhance therapeutic 
protein loading and delivery, and more importantly, shows the delivery of modified exosomes to 
intracellular lysosomal compartments. This aspect leads to the assumption that in future studies, 
these engineered exosomes can be used as a vehicle for delivery of therapeutic proteins for 
treatment of lysosomal storage diseases. 
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INTRODUCTION 
 
  1.1 Current Technologies and Motivation 

In the past, small-molecule drugs have dominated the pharmacological market around 
the world. However, as we exhausted the combinations of chemical compounds that can 
effectively treat disease, it became imperative that more advanced drugs were developed, 
which lead to the emergence of protein therapeutics [1]. Protein drugs offer numerous 
advantages over their small-drug counterparts, mostly stemming from their increased 
specificity to their drug target and thus, reduced off-target effects [2]. Although they offer 
great promise, there are still several limitations of protein therapeutics, highlighted by our 
inability to reach intracellular targets via current delivery methods [3, 4]. Included in protein 
drug limitations are their susceptibility to degradation in vivo and inability to cross the 
blood-brain barrier in the case of neurological diseases [5].  

In an attempt to remedy some of these limitations such as delivery of therapeutics to 
intracellular targets, many nanoparticle-protein drug conjugates have been investigated such 
as silica or gold nanoparticles [5, 6]. However, as these nanomaterials are foreign to the 
body, they can potentially cause a robust immune response, limiting their therapeutic use in 
vivo [7, 8]. Another limitation of foreign nanomaterials is the lack of degradability that many 
of these materials hold, leading to concerns about accumulation of foreign substances and 
potential for toxicity [8]. By themselves, gold or silica nanoparticle-protein drug conjugates 
also lack the ability to target specific cell types, which is often desired in disease treatment 
and can lead to higher dosages being utilized to gain a therapeutic response. To remedy these 
limitations, we present a solution in the use of exosomes as a nano-carrier of therapeutic 
proteins for use in intracellular drug delivery [9, 10]. 

 
1.2 Background 
 Exosomes are lipid based nanovesicles that shuttle proteins, DNA, RNA, and other lipids 
between cells [11-13]. They are roughly 50-150 nanometers in diameter and are formed within the 
endosomal compartments in mammalian cells where they are known as multiple vesicular bodies 
(MVB) before being released upon endosomal fusion with the cellular membrane, thus becoming 
an exosome (Fig 1C) [11, 12, 14, 15]. When the endosome invaginates to form MVBs, cytosolic 
proteins, DNA, and RNA are enclosed within the MVBs, which then exist within exosomes upon 
MVB secretion [11]. In mammalian cells, exosomes are secreted by nearly all cell types and as a 
result, are used in intercellular communication via the transport of proteins, DNA, and RNA [16, 
17]. Exosomes deliver their cargo and enter cells via the endocytic pathway using interactions 
between the exosomal and cellular transmembrane proteins; as exosomes are naturally used as a 
transport vehicle in cellular communication, it is hypothesized that they can be engineered for use 
in the delivery of desired therapeutic cargo [18, 19]. Because exosomes are naturally occurring 
nanovesicles in vivo, they can circumvent many of the limitations of synthetic nanoparticles for 
protein drug delivery such as a lack of immune response, ability to cross the blood-brain barrier, 
lack of toxicity, and the ability to attach ligands for targeted cell delivery [5, 9]. As an example, 
via electroporation techniques, DNA, RNA and small molecule drugs can be loaded into isolated 
exosomes for increased small-molecule drug delivery or gene therapy techniques [9].  

Previously, our group has demonstrated that the naturally occurring exosome surface 
protein, CD63 could be utilized to shuttle desired proteins into exosomal compartments by 
creating a chimeric CD63 scaffold-based protein chimera with a reporter protein attached to either 
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the N or C-terminus of CD63 [20]. Other naturally occurring exosome surface proteins have also 
been used for protein loading such as CD81 or CD9 [21]. However, to optimize loading of the 
protein, and uptake of the modified exosomes by various cell lines, we will be using a 
pseudotyping approach.  

Pseudotyping is a method to repackage viruses with new viral envelope proteins [22-24]. 
This process is typically used to alter and ideally optimize the infectivity of the original virus [25, 
26]. One of the most commonly used proteins in pseudotyping is the G glycoprotein of vesicular 
stomatitis virus (VSVG), due to its high infectivity to a large range of cell types [27]. In addition 
to this, the VSVG envelope is generated by inward budding of the cell membrane and endosomal 
compartments, which mimics the mechanism of natural exosome biogenesis [28]. Due to the 
effective loading of proteins into exosomes and high level of infectivity, rather than using a 
naturally occurring exosomal protein such as CD63, we will be using VSVG to create desired 
protein chimeras loaded into, now modified exosomes for therapeutic usage as a proof-of-concept.  

The proteins that we have attached to the VSVG exosome transmembrane scaffold are 
either a green or red fluorescent protein, and either Gaussia luciferase or a puromycin resistance 
protein. The Gaussia luciferase protein, a luminescent reporter allows us to quantify the activity 
of our engineered exosomes, while the puromycin resistance protein allows us to generate a 
VSVG based stable cell line for continuous production of modified exosomes which can confer 
puromycin resistance to target cells upon uptake [29, 30]. The fluorescent proteins allow us to 
track the biogenesis, and uptake of the engineered exosomes [30]. 
 
1.3 Project Goals 
 Ultimately, the goal of this project is a proof-of-concept that exosomes can be used as an 
effective delivery vehicle for bioactive proteins in disease treatment. To achieve this, we first 
needed to show that VSVG could effectively shuttle and anchor our bioactive protein chimeras 
into extracellularly secreted exosomes. Thus, we needed to track the biogenesis and bioactivity of 
our modified exosomes within transfected producer cells. Secondly, to achieve our goal, we 
needed to characterize the isolated exosomes, showing that they had the appropriate size, protein 
cargo activity, and surface markers that would be expected/necessary. Lastly, we wanted to 
demonstrate that the VSVG-modified exosomes could be effectively taken up by various 
mammalian cell lines via the VSVG surface protein, and cellular surface proteins. In addition, the 
modified exosomes needed to deliver the bioactive protein chimeras to the correct cellular 
compartments within these target cells. From these three achievements, we believe that will be 
able to replace our reporter cargo with therapeutic proteins in the future, allowing us to develop an 
effective delivery system for disease treatment. 
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MATERIALS AND METHODS 
 
2.1 Design and Construction of Expression Vectors for VSVG Fusion Proteins Chimeric 
protein constructs were configured from the 5’à3’ end with the following components: a 
cytomegalovirus promoter, the VSVG signal peptide and full length VSVG, which consists of the 
extracellular portion, juxtamembrane, proximal, transmembrane, and cytosolic regions of VSVG. 
Following the full length VSVG, an in-frame insertion of either red fluorescent protein (RFP) or 
green fluorescent protein (GFP) is attached, followed by either Gaussia luciferase (Gluc) or a 
puromycin resistance gene (puro) (Fig 1A). At the 3’ end, a polyadenylation site was added to 
finalize the protein construct. The gene expression vectors for the chimeric protein constructs 
were synthesized by gene synthesis techniques by Genscript (Piscataway Township, NJ, USA). 

 
2.2 Cell Culture Human embryonic kidney cells (HEK 293) were purchased from Alstem 
(Richmond, CA, USA). Human hepatocellular carcinoma cells (HEPG2), human glioblastoma 
cells (U87), and mouse adipose tissue fibroblast cells (L929) were purchased from American 
Type Culture Collection (Manassas, VA, USA). Cells were cultured in Dulbecco’s Modified 
Eagle’s Medium (DMEM) (Gibco; MA, USA), with 10% Fetal Bovine Serum (FBS) (GE 
Healthcare Life Sciences; Issaquah, WA, USA), and 1% Penicillin Streptomycin (Pen Strep) 
(Gibco; MA, USA).  At ~80% confluence, cells were treated with 0.25% trypsin-
ethylenediamnietraacetic acid (Trypsin-EDTA) (Gibco; MA, USA) for cell dissociation and 
passaged. All cells were incubated at 37°C and 5% CO2. 
 
2.3 Transient Transfection At ~70% confluence, in six-well plates, HEK 293 cells were 
transfected by a solution containing plasmid DNA (1.3-2 μg/well), PEI transfection reagent (10 
μL), and Opti-Mem (200 μL) (Gibco; MA, USA). 

 
2.4 Cell Microscopy Images of live cells were using either fluorescence (Olympus; Waltham, 
MA, USA) or confocal microscopy (Leica; Buffalo Grove, IL, USA). The software used for 
image capturing was either cellSens Standard (Olympus; Waltham, MA, USA) or Leica 
Application Suite X (Leica; Buffalo Grove, IL, USA) for fluorescence and confocal microscopy 
respectively. Adobe Photoshop CS was used for the overlay, cropping, brightness, and contrast 
adjustment of images. 

  
2.5 Isolation of Exosomes HEK 293 Cells were cultured to confluence in DMEM, 10% FBS, and 
1% Pen Strep in 145 mm tissue culture dishes. They were transiently transfected at ~70% 
confluence with a solution containing 20 µg plasmid, 100 µL PEI transfection reagent, and 2 mL 
Opti-Mem. After 24 hours at ~80-90% confluence, cell media was changed to serum free media 
UltraCulture (Lonza; Portsmouth, NH, USA) for 48 hours. The conditioned media was then 
collected and centrifuged at 1500g for 10 minutes and filtered through a 0.2 µm filter. Exosomes 
were then isolated from the collected filtered UltraCulture media using the ExoQuick-TC (System 
Biosciences; Palo Alto, CA, USA) exosome isolation reagent via the manufacturer’s protocol, 
which entails an incubation at 4°C overnight, before centrifugation at 3000g for 1.5 hours. The 
supernatant was then removed, and isolated exosomes were re-suspended in PBS (Teknova; 
Hollister, CA, USA). The re-suspended exosome’s protein concentration was measured using 
NanoDrop Lite (Thermo Fisher Scientific; Fremont, CA, USA). 
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2.6 Luciferase Assay Transfected HEK 293 cells were lysed with 500 μL of 1x reporter lysis 
buffer (Promega; Sunnyvale, CA, USA) in 6 well plates, and the cell lysate was collected. 20-30 
μLof either  cell lysate or isolated exosomes were added to a 96-well white bottom plate 
(Corning; Tewsbury, MA, USA). 100 μL of coelenterazine Gaussia Luciferase substrate was 
added to the wells and luminescence was recorded using an infinite m200PRO (Tecan; San Jose, 
CA, USA) plate reader and icontrol 1.8 software (Tecan; San Jose, CA, USA). 

 
2.7 ELISA A standard curve for CD63 was established using an ExoELISA-ULTRA protein 
standard (System Biosciences; Palo Alto, CA, USA). 50 μg of isolated sample exosomes were 
diluted in a volume of 120 μL of Coating Buffer (System Biosciences; Palo Alto, CA, USA). 50 
μL of CD63 primary antibody was added to each well at a 1:100 dilution in Blocking Buffer 
(System Biosciences; Palo Alto, CA, USA) and incubated. 50 μL of secondary antibody at a 
1:5000 dilution was then added and incubated. 50 μL of Super-Sensitive TMB ELISA substrate 
(System Biosciences; Palo Alto, CA, USA) was then added. 50 μL of Stop Buffer was introduced 
and quantification was performed using an infinite m200PRO plate reader and icontrol 1.8 
software at 450 nm absorbance. 

 
 2.8 Nanoparticle Tracking Analysis (NTA) Exosomes were isolated and resuspended as   
previously outlined. 150 µL of isolated exosome sample was sent to Particle Characterization 
Laboratories Inc. (Novato, CA, USA) for NTA analysis per the company’s protocol. 

 
2.9 Western Blot Exosomes were isolated as previously outlined. 60 μg of each isolated exosome 
sample were loaded onto a 4-12% ExpressPlus PAGE gel (GenScript; Piscataway, NJ, USA) with 
Prestained Protein MW Marker #26612 (ThermoFisher Scientific; Fremont, CA, USA) in their 
respective wells. Gel Electrophoresis was run using a Mini-PROTEAN Tetra Cell (BioRad; 
Hercules, CA, USA) and Powerpac power source (BioRad; Hercules, CA, USA). Proteins were 
transferred to a Amersham Hybond P 0.2 μm PVDF membrane (GE Healthcare Life Sciences; 
Issaquah, WA, USA) with a semi- dry transfer cell (Bio-Rad). The membrane was then incubated 
with either primary mouse antibody CD81 mAb (Santa Cruz Biotechnology; Santa Cruz, CA, 
USA) or CD63 (Santa Cruz Biotechnology; Santa Cruz, CA, USA). The membrane was then 
incubated with anti-mouse HRP-conjugated secondary antibody (ThermoFisher Scientific; 
Fremont, CA, USA). Blots were visualized with Pierce ECL Western Blotting Substrate 
(ThermoFisher Scientific; Fremont, CA, USA) on an ImageQuant LAS 500 (GE Healthcare Life 
Sciences; Issaquah, WA, USA). 
 
2.10 Dot Blot Exosomes were isolated as previously discussed. 250 μg of isolated exosomes were 
sent to System Biosciences (Palo Alto, CA, USA) for their ExoCheck service and performed per 
the company’s protocol. 
 
2.11 Exosome Uptake Assay HEK293, U87, HEPG2, and L929 were seeded in 96-well plates. 
At ~40% confluence, the conditioned media was replaced with 100 μl of UltraCulture serum-free 
media containing 0.3 μg/μL of isolated exosomes per well. Cells were then imaged at 20x 
magnification after 6, 24, 48, and 72 hours with either fluorescence or confocal microscopy, as 
previously outlined. 

 
2.12 Stable Cell Line Development HEK 293 cells were treated with 5 µg/ml puromycin 
dihydrochloride (ThermoFisher Scientific; Fremont, CA, USA) in DMEM, 10% FBS, and 1% 
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Pen Strep, 24 hours post-transfection in a 6-well plate at ~80% confluency. After drug resistant 
cells grew to confluency, the cells were passaged onto 100 mm plates where they were cultured 
for 8 weeks. Puromycin resistant cells were viewed under fluorescence microscopy as previously 
outlined to ensure complete GFP or RFP expression in addition to puromycin resistance. 

 
2.13 HOESCHT Stain Cells were cultured for 24, 48, or 72 hours on glass bottom plates. At the 
desired time, cell culture medium was removed and replaced with 1:1000 Hoescht 33352 
(ThermoFisher Scientific; Fremont, CA, USA) in PBS and incubated at 37°C for 10 minutes. The 
Hoescht solution was removed and cells were washed with PBS before imaging via confocal 
microscopy as previously described. 

 
2.14 Lysosomal Stain 1 mM LysoTracker Red DND-99 (Invitrogen; Carlsbad, CA, USA) was 
diluted in cell culture medium to a concentration of 75 nM. Cells were cultured for 48 hours 
under previously described conditions and culture medium was replaced with the LysoTracker-
cell media solution and incubated at 37°C for 30 minutes. The LysoTracker solution was then 
replaced with fresh cell culture medium or PBS before imaging via confocal microscopy. 

 
2.15 Endosomal Stain Cells were cultured for 24 hours on a 500 µl glass bottom plate before 5-7 
µl of CellLight Early Endosomes-RFP, BacMam 2.0 (Invitrogen; Carlsbad, CA, USA) or 
CellLight Late Endosomes-RFP, BacMam 2.0 (Invitrogen; Carlsbad, CA, USA) was added to the 
cell culture medium. Cells were then cultured for 16 hours at 37°C before imaging via confocal 
microscopy. 
 
2.16 Cell Counting Cultured cells were trypsinized and collected before being centrifuged at 
1500 rpm for 5 min. Cells were then resuspended and mixed with Trypan Blue 0.4% Solution 
(MP Biomedicals; Solon, Ohio, USA) before being counted on a C-Chip Disposable 
Hemocytometers (INCYTO; Convington, GA, USA) and Vista Vision Light Microscope (VWR; 
Visalia, CA, USA). 
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RESULTS 
 
3.1 Results 

1. Biogenesis of Exosomes 
Exosomes offer a unique vehicle for intracellular delivery of bioactive cargos to 

living cells. Being a naturally cell secreted vesicle used in a variety of motifs such as 
intercellular communication and transport, exosomes can freely travel throughout the body 
without the threat of an immune response [12]. To harness this property of exosomes, we 
have developed a chimeric protein via a gene sequence composed of a promoter (CMV), 
fluorescent reporters GFP or RFP, and either a puromycin resistance gene (Puro) or 
secretory a Gaussia luciferase (Gluc) reporter all anchored on the exosomal membrane by a 
vesicular stomatitis viral glycoprotein (VSVG) (Fig 1A, 1B). 

 
 
Figure 1. Exosome pseudotyping design 
Notes: (A) Design of VSVG constructs. For each construct, VSVG is fused with either a GFP or RFP reporter, in 
addition to either a Gaussia luciferase (gLuc) or Puromycin (Puro) resistance gene. (B) Illustration of the protein-
loaded exosomes based on the four gene constructs. The glycoprotein VSVG (black), reporter GFP (green) or RFP 
(red), and protein cargo gLuc (gold) or Puro (purple) are shown. (C) Model illustrating the biogenesis of modified 
exosomes in mammalian cells. Upon protein production, VSVG migrates to the plasma membrane via its signaling 
peptide where inward budding generates early endosomes. A second inward budding within the late endosome forms 
multivesiclular bodies (MVB). Fusion of the late endosome containing MVBs with the plasma membrane results in 
extracellular release of exosomes. (D) Model illustrating the uptake of modified exosomes in mammalian cells. 
Modified exosomes are internalized via endocytosis by target cells, resulting in endosome formation, and ultimately 
either fuse with the lysosomes or cellular membrane for extracellular re-secretion. 
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Upon translation of the designed gene sequence, the chimeric protein is to the cell 

membrane by the VSVG signaling peptide where it is anchored by the VSVG protein itself. 
Invagination of the cell membrane results in endosome formation with the newly anchored 
chimeric proteins populating the endosomal membrane [15]. A second invagination of the 
endosomal compartment results in the formation of multiple vesicular bodies (MVB) which 
upon secretion, produce exosomes containing the designed chimeric VSVG transmembrane 
protein (Fig 1C) [21]. By transfecting our gene constructs into HEK293 cells, we tracked 
our chimeric protein throughout the exosome biogenesis pathway. After the first 6-24 hours, 
the GFP reporter can be observed at the outer cell membrane before progressing towards the 
1st and 2nd invaginations after 48-72 hours and resulting in punctations throughout the cell 
(Fig 2A-L). These punctations show a stark difference when compared with cytosolic GFP, 
where a uniform expression is observed, and indicates that reporter GFP expression may be 
within exosomes (Fig 2M-O). 

 

  
Figure 2. Intracellular tracking of exosome biogenesis 
Notes: HEK293 cells were transfected with either each of our four VSVG-based plasmid constructs (A-D) or a positive 
control, EF1-G2F (E). Cells were observed by fluorescence microscopy after 24, 48, and 72 hours. VSVG-reporter 
modified exosomes aggregate into punctated groups after traveling to the cell membrane and invaginating after 48 
hours (A-D) during biogenesis rather than producing a uniform cytosolic expression profile as seen in the positive 
control at 48 hours (E).  
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To confirm that our VSVG based chimeric proteins were indeed located in exosomal 
compartments within the HEK 293 cells, we co-transfected them with known exosomal 
marker-reporter constructs CD63 and XPACK (Fig 3). Co-localized expression of reporter 
proteins was observed within the intracellular exosomes, confirming our initial 
observations. 

 
 
 
 

  
Figure 3. Colocalization of tracking molecules with exosome markers 
Notes: HEK293 cells were cotransfected with our VSVG-RFP-gluc (A,C) or VSVG-RFP-puro (B,D) constructs and 
known exosomal markers: XPACK-GFP (C,D) or CD63-GFP  (A,B). After 48 hours incubation, modified exosomes 
were colocalized into subcellular punctations as demonstrated by the yellow overlap within transfected cells. This 
confirms that our designed constructs produce protein chimeras that travel to the exosomes within  producer cells. Cells 
were observed by fluorescence microscopy. 
 
 
 

 
While the presence of our chimeric protein in exosomes of producer cells was 

confirmed via imagining, the activity of the bioactive cargos, either secretory Gluc or 
puromycin resistance within the exosomes were being assayed in parallel. Secretory 
Gaussia luciferase, attached to our GFP/RFP reporter and VSVG transmembrane anchor 
produces a luminescent signal and can be measured by a microplate reader. To 
quantitatively measure luminescence expression, a luciferase assay was run, where we 
observed a dramatic 70-90x increase in both our GFP and RFP transfected cell lysate over 
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untransfected, parental cell lysate (Fig 4A). This indicates that while attached to our VSVG 
anchoring protein, the bioactivity of the protein cargo is retained within the transfected 
cells. Separately, the transfected exosome producer cells with puromycin resistance were 
also assayed to determine cargo activity. By placing the producer cells in cell culture media 
containing puromycin (3-5 µg/mL) and comparing them visually to untransfected HEK 293 
cells, we observed a difference in cell viability and survival (Fig 4B). This experiment 
further confirms that both our protein cargos remain active when inserted into exosomes via 
a VSVG transmembrane protein. 

 
 
 
 

 
Figure 4. Engineered tracking markers are biologically active 
Notes: (A) HEK293 cells were transfected with our VSVG-Gluc constructs, lysed at 48 hours, and combined with the 
luciferin substrate, where luminescence was recorded via plate reader. Gaussia Luciferase expression in VSVG-gLuc 
transfected cell lysate compared to mock transfection of parental HEK293 lysate as a negative control show that the 
protein cargo is biologically active at roughly a 70 and 90-fold increase for VSVG-GFP-Gluc and VSVG-RFP-Gluc 
respectively. Data is presented as relative light units from three samples (mean ± standard deviation, n =3). (B) At 48 
hours post transfection, HEK293 cells previously transfected with VSVG-puro constructs began incubation with 5 
µg/ml puromycin media and images were taken at 72 hours post puromycin treatement via fluorescence microscopy. 
The observed puromycin resistance in VSVG-puro transfected cells shows the biologically active protein cargo was 
correctly produced and expressed.  
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2. Exosome Characterization 
After observing the biogenesis and activity of our engineered exosomes within 

producer cells, we isolated our engineered exosomes and further characterized their size 
distribution, concentration, surface markers, and protein cargo activity. An ELISA assay 
was run with an antibody against a known exosomal marker, CD63 to determine exosome 
concentration (exosome number/mg protein) of our isolated engineered exosomes compared 
with parental HEK 293 exosomes (Fig 5A). The exosome concentrations are similar 
between the isolated parental HEK 293 exosomes and that of all of our engineered exosome 
constructs. In addition to the ELISA, Nanoparticle Tracking Analysis (NTA) was performed 
comparing parental HEK 293 isolated exosomes and our modified exosomes to observe the 
particle size and distribution of samples. Once again, similar concentrations (exosome 
number/mL) are observed between the parental exosomes and modified ones (Fig 5B). The 
NTA also indicates that the particle size is similar between the control exosomes and our 
engineered nanovesicles (40-100 nm) with a single peak at the correct size being observed. 
These experiments indicated to us that our engineered exosomes retain their native size and 
distribution, despite the modifications and presence of a protein cargo. 

 
Figure 5. Characterization of exosomes released from producer cells 
Notes: Exosomes were isolated from serum-free cell culture media of transfected producer cells with Exo-Quick TC 
(System Biosciences). (A) The total number of exosomes per mg protein of sample was recorded by running an ELISA 
against a known exosome tetraspanin protein, CD63 antibody. Exosome number per mg protein is similar between all 
VSVG constructs and the control, unmodified HEK 293 exosomes (~9x109 exosomes/mg protein). (B) Isolated 
exosomes were analyzed with NTA (Nanosight) indicating similar size distributions between VSVG-based constructs 
and unmodified HEK 293 exosomes (average size ~105-115 nm). (C) Luciferin was combined with isolated exosomes, 
and luminescence was recorded via plate reader. Gaussia Luciferase expression in the isolated exosomes shows a 
biologically active cargo with significantly higher activity levels of a 310 and 910-fold increase for VSVG-GFP-Gluc 
and VSVG-RFP-Gluc exosomes respectively. Data is presented as relative light units from three samples (mean ± 
standard deviation, n =3). (D) Isolated modified exosomes were visualized with confocal microscopy. (E) Western blot 
of isolated modified exosomes was performed with known exosome proteins CD63 and CD81 with sizes ~37 and ~22 
kDA respectively. A dot blot of isolated modified exosomes from VSVG-RFP-puro and VSVG-RFP-Gluc was 
performed with known exosome proteins FLOT-1, ICAM, ALIX, CD81, CD63, EpCAM, ANXA5, TSG101 and a 
negative control protein GM130, showing the presence of correct exosomal molecular markers. 

Figure 5
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To detect the presence of the bioactive cargo within our modified exosomes, isolated 
exosomes were observed via confocal microscopy and compared with isolated parental 
HEK 293 exosomes. GFP and RFP expression was clearly observed in both the puromycin 
resistance and Gaussia luciferase modified exosomes but not in parental HEK 293 secreted 
exosomes (Fig 5D). To quantify the amount of cargo loaded within the isolated exosomes, a 
luciferase activity assay was run on the isolated modified exosomes containing the Gluc 
reporter. Luciferase activity was detected at a level of 310, and 910 times in the VSVG-
GFP-gLuc and VSVG-RFP-gLuc modified exosomes respectively as compared to parental 
HEK 293 exosomes (Fig 5C). In conjunction, these two experiments indicated to us that the 
cargo remained active within the isolated engineered exosomes. 

Lastly, to further verify that our bioactive cargo was within exosomes, a Dot Blot 
was performed with known exosomal markers such as CD63, EpCAM, ANXA5, FLOT-1, 
ICAM, TSG101, ALIX, and CD81, as well as against a negative control marker in GM130. 
It was observed that both our puromycin resistant and Gaussia luciferase containing 
exosomes had levels of the known exosomal makers, and not that of the negative control 
maker, GM130 (Fig 5E). Furthermore, western blots were performed to not only confirm 
the presence of known exosomal markers CD63 and CD81, but also determine if those 
markers were the correct protein size, indicating no change from our VSVG based 
modifications. A molecular weight of 37-50 kDa, and 20-25 kDa was observed for CD63 
and CD81 respectively, which is confirmed from literature as the correct size (Fig 5E) [20]. 
As a whole, these characterization experiments indicate that our protein cargo is active 
within isolated exosomes, and offer no significant change to particle size, distribution, or 
expression of native surface proteins. 
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3. Exosome Activity in Living Cells 
After characterization of our isolated engineered exosomes for size distribution, 

cargo bioactivity, and exosomal markers, we investigated the uptake of the engineered 
exosomes within various living cell lines in vitro. In our first uptake experiment, isolated 
exosomes expressing GFP were introduced with serum-free media into a culture of 
untransfected living cells and observed for 48 hours. It was noted that the modified 
exosomes containing GFP were successfully taken in by HEK293, HEPG2, U87, and L929 
cells after 24-48 hours incubation time (Fig 6 A-X). The presence of our GFP reporter 
suggests that not only are the exosomes taken up by various cell types, but that the cargo is 
biologically active for at least 48 hours post-introduction. 

 
 

 
 
Figure 6. Uptake of protein-loaded exosomes by mammalian cells  
Notes: Isolated VSVG-GFP-puro modified exosomes were introduced to HEK293, U87, L929, and HEPG2 cells in 
culture. After 6, 24 and 48 hours, intracellular localization of the punctated modified exosomes was observed, 
indicating uptake of the biologically active protein cargo into the target cell. It was hypthoesized that the modified 
exosomes entered the target cells via endocytosis. Cells were observed via fluorescence microscopy or confocal 
microscopy. 

 
 
 
Next, a stable cell line of modified exosome producer cells was established with 

both our VSVG-GFP-puro and VSVG-RFP-puro gene constructs in media containing either 
3 µg/mL or 5 µg/mL puromycin (Fig 7A-H). It has previously been noted by various 
studies that the cytotoxic nature of VSVG makes it impossible to establish a stable cell line, 
however, by using a lower concentration of puromycin in cell culture media in conjunction 
with the inherent robustness of HEK 293 cells, a stable cell line was established [9]. These 
stable cell lines were used to further ease our research in both the production and uptake of 
modified exosomes. 
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Figure 7. Intracellular localization of exosome biogenesis in a stable cell line 
Notes: (A-H) HEK 293 cells were transfected with VSVG-based gene constructs containing a puromycin resistance 
gene sequence. Cell culture media was replaced with media containing 5 ug/ml purmoycin and surviving cells 
containing the puromycin resistance gene within their genome were grown for 10 weeks. Cells were observed with 
confocal microscopy. (I-M) The VSVG-GFP-Puro stable cell line was transfected with an RFP reporter targeting 
Rab5a, a biomarker associated with early endosomes. The RFP and GFP reporters were observed to be co-localized 
within similar cellular compartments via confocal microscopy 48 hours after transfection. (N-R) The VSVG-GFP-Puro 
stable cell line was stained with a red lysosomal dye, and it was observed that the GFP and RFP reporters were co-
localized via confocal microscopy 48 hours after plating. 

 
 
 
To confirm that the cellular compartment that our engineered chimeric VSVG 

proteins enter upon biogenesis is initially the endosomes followed by MVBs, our VSVG-
GFP-puro stable cell line was transfected with a reporter RFP fused with an early 
endosomal localizing protein, Rab5a. It was observed that the GFP modified exosomes were 
co-localized in early endosomal compartments, thus confirming our initial assumption that 
exosomes are produced from inward budding of endosomes (Fig 7I-M). Separately, our 
VSVG-GFP-puro stable cell line was chemically stained with a red flurorescent dye 
localizing within lysosomal compartments and observed via confocal microscopy (Fig 7N-
R). It was noted that our modified exosomes within the stable cell line co-localized with a 
significant fraction of dyed lysosomal compartments. This indicates that a portion of 
exosome producing endosomes merge into the lysosomal compartment, which is consistent 
with previous knowledge of endosomal pathways, where the other portion fuses with the 
cell membrane, secreting its contents [31]. 

 In a separate line of experiments, exosomes from our VSVG-GFP-puro stable cell 
line were isolated and incubated with our VSVG-RFP-puro for 48 hours. It was observed 
over this time period that our GFP expressing exosomes not only were taken up by the 
stable cells, but also that the isolated GFP modified exosomes were co-localized within the 
exosome producing compartments of the stable producer cells, indicated by yellow 
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punctations (Fig 8A-I). To further confirm the previous experiment, our VSVG-GFP-puro 
and VSVG-RFP-puro stable cell lines were co-cultured for 48 hours. It was hypothesized 
that modified exosomes from both cell lines would be secreted into the surrounding media, 
and the GFP/RFP expressing exosomes would be taken up by the opposite stable producer 
cells. This hypothesis was confirmed by confocal images of the co-culture from 24-72 
hours, which shows a co-localization of GFP and RFP within stable cells, seen as yellow 
punctations (Fig 8J-R).  

 
 

 
Figure 8. Cellular Uptake and Co-localization of Modified Exosomes 
Notes: (A-I) Modified exosomes isolated from VSVG-GFP-Puro transfected cells were introduced to the VSVG-RFP-
Puro stable cell line and observed for 72 hours. Upon uptake of the modified exosomes, it was observed via confocal 
microscopy that after 48 hours, the reporter GFP and RFP were co-localized within the stable cell line, indicating that 
they are within the same cellular compartment, which is presumably the endosomes. (J-R) The VSVG-GFP-Puro and 
VSVG-RFP-Puro stable cell lines were cultured together for 72 hours and observed via confocal microscopy. It was 
noted that modified exosomes were secreted into the surrounding media and uptaken by the surrounding stable cells. 
These secreted exosomes were co-localized within the intracellular compartments of the stable cells of the opposite 
reporter color, further confirming the uptake of modified into the same cellular compartment of stable producer cells. 

 
 
 
Through the previous lines of experiments, it was demonstrated that modified 

exosomes were produced in the endosomal compartments, with a population of exosomes 
within the endosomes fusing with the lysosomal compartments. Furthermore, it was 
observed that when isolated modified exosomes were introduced to stable exosome 
producer cells, they were taken up and localized in the same compartments that produce the 
modified exosomes, presumably the endosomal compartments. Thus, it was hypothesized 
that the modified exosomes enter the endosomal and lysosomal compartments upon uptake 
by non-producer, target cells. To confirm this hypothesis, modified GFP expressing 
exosomes were incubated with parental HEK 293 cells, and subsequently co-transfected 
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with a Rab5a based RFP construct targeting the endosomal compartments. It was observed 
via confocal microscopy that the modified exosomes were localized within the endosomal 
compartments of non-modified HEK 293 (Fig9A-D) and U87 (Fig9I-L) cells. 

 
Figure 9. Cellular Compartmentalization of Exosomes upon Uptake 
Notes: (A-D) Isolated VSVG-GFP-Puro exosomes were introduced to parental HEK293 cells in culture for 24 hours 
before being transfected with an endosomal Rab5a-RFP reporter. After an additional 24 hours, the cells were observed 
via confocal microscopy and the GFP and RFP reporters were seen to be co-localized within endosomal compartments. 
(E-H) Again, VSVG-GFP-Puro exosomes were introduced to HEK293 cells in culture for 48 hours before being 
stained with a red lysosomal dye. The cells were observed via confocal microscopy to have RFP and GFP reporters co-
localized within the lysosomal compartments. (I-P) The same procedures were then performed with U87 cells, 
producing similar observations. 

 
 

Concurrently, modified GFP expressing exosomes were introduced to either non-
modified HEK 293 and U87 cells, however in this case, the cells were stained with a red 
fluorescent dye localized within lysosomal compartments. Once again, it was observed via 
confocal microscopy that the modified exosomes were localized within those lysosomal 
compartments in both HEK 293 (Fig 9E-H) and U87 (Fig 9M-P) cells. 

Through the previous experiments, we have demonstrated that isolated modified 
exosomes enter and localize within endosomal and lysosomal compartments upon 
incubation with various cell lines. However, although GFP and RFP could be observed, we 
wish to further quantify the levels of bioactivity of the delivered proteins within these cells. 
To confirm the bioactivity, unmodified HEK 293 cells were incubated with VSVG-GFP-
Gluc modified exosomes for 3-72 hours. At various time points (3, 8, 24, 48 and 72 hours), 
the HEK 293 cells were washed with PBS to remove modified exosomes not localized 
within the cells, and subsequently lysed for a luciferase activity assay. Through this time-
course luciferase uptake experiment, it was observed that the unmodified HEK 293 cells 
incubated with modified exosomes presented increasing luciferase activity for 48 hours, 
before a slight dip in activity at 72 hours (Fig 10A). This dip in luciferase activity could be 
due to the degradation of the Gluc protein within the lysosomes. 
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Figure 10. Bioactivity of Cargo upon Uptake of Modified Exosomes 
Notes: (A) Isolated modified VSVG-GFP-Gluc exosomes were introduced to parental HEK293 cells and at time 
points: 3, 8, 24, 48 and 72 hours, the cells were washed with PBS to remove free floating modified exosomes and 
subsequently lysed. A luciferase assay was performed on the cell lysate with results showing an increase in 
luminescence over time, likely from uptake of the modified exosome and its cargo. At time points 3, 8, 24, 48, and 72 
hours a 1.3, 1.9, 2.8, 4.9, and 4.4-fold increase in bioluminescence of cell lysates was observed respectively. Data is 
presented as relative light units from three samples (mean ± standard deviation, n =3). (B) Isolated VSVG-GFP-Puro 
exosomes, or VSVG-GFP-Gluc were added to parental HEK293 cells and incubated for 48 hours. After which, the 
media was replaced with 3 µg/mL puromycin cell culture media. Cells were observed via fluorescence microscopy for 
48 hours post puromycin treatment. It was noted that cells treated with VSVG-GFP-Puro exosomes had a slight 
resistance to puromycin. (C) After images were taken, the treated cells were collected, stained with Trypan Blue and 
counted. It was noted that the cells treated with VSVG-GFP-Puro exosomes were ~49% alive as compared to the 
VSVG-GFP-gLuc negative control which was ~34%. Data is presented as percentage of viable cells from three samples 
(mean ± standard deviation, n =3). 

 
To further confirm that the modified exosomes delivered bioactive proteins to 

human cells, VSVG-GFP-puro isolated exosomes were incubated with unmodified HEK 
293 cells for 48 hours. After 48 hours, the HEK 293 cell culture media was replaced with 
media containing 3 µg/mL puromycin. The cells were then observed for 24, and 48 hours 
for loss of cell viability. Through both cell images, and a Trypan blue cell counting method, 
it was observed that the cells treated with VSVG-GFP-puro exosomes had greater cell 
viability than HEK 293 cells that were treated with exosomes that did not contain a 
puromycin resistance protein (~48% vs. ~34%) (Fig 10B, C). Thus, through the previous 
experiments, it can be deduced that not only do our modified exosomes enter the 
appropriate cellular compartments, but they also hold the ability to confer their bioactive 
cargo to target cells upon incubation. 
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3.2 Discussion 
 This research has significant implications as it pertains to the development of a novel in vivo 
drug delivery system. As previously mentioned, engineering exosomes can overcome many 
limitations of current protein drug delivery systems such as intracellular delivery, in vivo half-life, 
immunogenicity, and the crossing of the blood-brain barrier [5]. Furthermore, by using VSVG as 
an exosomal transmembrane anchor, we can optimize both loading and delivery of therapeutic 
proteins via exosome delivery [32]. Through our research, we have shown that exosomes can be 
used as an efficient bioactive carrier system to deliver desired protein therapeutics to various cell 
types.  
 We have demonstrated that we are able to direct biological cargo into exosomes using VSVG 
as a cellular transmembrane anchor. Upon secretion, these modified exosomes can then be 
collected, isolated, and purified from their producer cells. We have also shown that while the 
protein cargo within the modified exosomes is still biologically active, it has little effect on the 
size distribution and native transmembrane proteins of exosomes. Furthermore, it has been 
demonstrated that these modified exosomes can be taken up and deliver their biological cargo to 
various mammalian cell types. We have also shown that not only is the cargo still biologically 
active upon delivery to target cells, but also enters the endosomal and lysosomal compartments of 
the target cell. 
 Through the findings of this study, we have multiple avenues of future research to pursue for 
engineering exosomes as drug delivery vehicles. Because endogenous, non-modified exosomes 
carry DNA, RNA, and proteins between cells, and we have clearly shown that our modifications 
do not have an impact on exosome size distribution or molecular markers, it can be extrapolated 
that we can replace our reporters, GFP/RFP or Gaussia luciferase/puromycin resistance, with a 
similarly sized therapeutic protein for applications such as disease treatment or enzyme 
replacement therapies [14, 33, 34]. Also, because we have shown that our engineered exosomes 
enter the endosomal and lysosomal compartments upon uptake, it would make sense to target a 
lysosomal storage disease with this future enzyme replacement therapy study.  
 Additionally, rather than using the extracellular domain of VSVG, which is robustly uptaken 
by a broad spectrum of cell types, we may be able to replace this extracellular region with a 
targeting ligand, to preferentially direct modified exosomes and thus, its protein cargo to a certain 
cell type/tissue [35]. Using the example of lysosomal storage disease treatment, an extracellular 
targeting ligand for macrophages would be physiologically relevant, due to the nature of 
macrophages in degradation via lysosomal enzymes [36]. In general, with this system, we’d 
theoretically be able to deliver the necessary bioactive therapeutic to the appropriate tissue in vivo. 
This allows for lower amounts of off-target side effects, which in turn results in a lower necessary 
dosage required to produce a therapeutic effect [5]. Although we have shown delivery of proteins 
in this study, it would not be difficult to use our designed constructs to load our engineered 
exosomes with small molecule drugs, DNA, or RNA, which has far reaching implications in 
disease treatment of cancer and genetic disease [14, 37]. 
 In future studies, the number of therapeutic proteins within each exosome would need to be 
determined to estimate the necessary in vivo therapeutic dosage. Furthermore, in our next studies, 
we could use a therapeutic protein within our modified exosomes for a disease model to determine 
efficacy of the delivery system and treatment. As previously mentioned, we can also remove the 
extracellular region of VSVG and replace it with a tissue specific targeting ligand to preferentially 
deliver our cargo to certain cell types, while also eliminates the potential for an immunogenic 
response to extracellular VSVG. Ultimately, animal studies would also be optimal to give us a 
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better understanding of an exosome-based drug delivery system in vivo. Through these studies, 
we’d prove the utility of exosomes as a nanocarrier of protein therapeutics and open the door for 
delivery of other biologically active therapeutics using this system. 
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CONCLUSION 
We have demonstrated that VSVG has the ability to shuttle and anchor bioactive 

proteins into the secreted exosomal membranes, where, engineered exosomes can be 
collected and used as a delivery vehicle of desired therapeutic cargo to the endosomal and 
lysosomal cellular compartments of targeted cells. Our dual reporter system of GFP/RFP and 
Gluc/puro designed constructs was present in our modified exosomes, allowing us to track 
their movement visually and perform quantitative analysis. Our modified exosomes overcome 
many limitations of current protein drug delivery methods such as in vivo half-life and 
immunogenicity to name a few. Because exosomes are used naturally in cellular 
communication pathways, they offer unique properties in vivo that can be levied in drug 
delivery such as tumor cell penetration, and the ability to cross the blood-brain barrier. 
Engineered exosomes offer an exciting avenue for drug delivery research but needs to be 
studied in depth before therapeutic engineered exosomes can find its way into the clinical 
setting. 
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