50,162 research outputs found

    A fully-discrete-state kinetic theory approach to modeling vehicular traffic

    Get PDF
    This paper presents a new mathematical model of vehicular traffic, based on the methods of the generalized kinetic theory, in which the space of microscopic states (position and velocity) of the vehicles is genuinely discrete. While in the recent literature discrete-velocity kinetic models of car traffic have already been successfully proposed, this is, to our knowledge, the first attempt to account for all aspects of the physical granularity of car flow within the formalism of the aforesaid mathematical theory. Thanks to a rich but handy structure, the resulting model allows one to easily implement and simulate various realistic scenarios giving rise to characteristic traffic phenomena of practical interest (e.g., queue formation due to roadworks or to a traffic light). Moreover, it is analytically tractable under quite general assumptions, whereby fundamental properties of the solutions can be rigorously proved.Comment: 22 pages, 3 figure

    Generic principles of active transport

    Full text link
    Nonequilibrium collective motion is ubiquitous in nature and often results in a rich collection of intringuing phenomena, such as the formation of shocks or patterns, subdiffusive kinetics, traffic jams, and nonequilibrium phase transitions. These stochastic many-body features characterize transport processes in biology, soft condensed matter and, possibly, also in nanoscience. Inspired by these applications, a wide class of lattice-gas models has recently been considered. Building on the celebrated {\it totally asymmetric simple exclusion process} (TASEP) and a generalization accounting for the exchanges with a reservoir, we discuss the qualitative and quantitative nonequilibrium properties of these model systems. We specifically analyze the case of a dimeric lattice gas, the transport in the presence of pointwise disorder and along coupled tracks.Comment: 21 pages, 10 figures. Pedagogical paper based on a lecture delivered at the conference on "Stochastic models in biological sciences" (May 29 - June 2, 2006 in Warsaw). For the Banach Center Publication

    Nonequilibrium Steady States of Matrix Product Form: A Solver's Guide

    Full text link
    We consider the general problem of determining the steady state of stochastic nonequilibrium systems such as those that have been used to model (among other things) biological transport and traffic flow. We begin with a broad overview of this class of driven diffusive systems - which includes exclusion processes - focusing on interesting physical properties, such as shocks and phase transitions. We then turn our attention specifically to those models for which the exact distribution of microstates in the steady state can be expressed in a matrix product form. In addition to a gentle introduction to this matrix product approach, how it works and how it relates to similar constructions that arise in other physical contexts, we present a unified, pedagogical account of the various means by which the statistical mechanical calculations of macroscopic physical quantities are actually performed. We also review a number of more advanced topics, including nonequilibrium free energy functionals, the classification of exclusion processes involving multiple particle species, existence proofs of a matrix product state for a given model and more complicated variants of the matrix product state that allow various types of parallel dynamics to be handled. We conclude with a brief discussion of open problems for future research.Comment: 127 pages, 31 figures, invited topical review for J. Phys. A (uses IOP class file

    Steady state solutions of hydrodynamic traffic models

    Full text link
    We investigate steady state solutions of hydrodynamic traffic models in the absence of any intrinsic inhomogeneity on roads such as on-ramps. It is shown that typical hydrodynamic models possess seven different types of inhomogeneous steady state solutions. The seven solutions include those that have been reported previously only for microscopic models. The characteristic properties of wide jam such as moving velocity of its spatiotemporal pattern and/or out-flux from wide jam are shown to be uniquely determined and thus independent of initial conditions of dynamic evolution. Topological considerations suggest that all of the solutions should be common to a wide class of traffic models. The results are discussed in connection with the universality conjecture for traffic models. Also the prevalence of the limit-cycle solution in a recent study of a microscopic model is explained in this approach.Comment: 9 pages, 6 figure
    corecore