6,252 research outputs found

    Symmetrization for fractional elliptic and parabolic equations and an isoperimetric application

    Full text link
    We develop further the theory of symmetrization of fractional Laplacian operators contained in recent works of two of the authors. The theory leads to optimal estimates in the form of concentration comparison inequalities for both elliptic and parabolic equations. In this paper we extend the theory for the so-called \emph{restricted} fractional Laplacian defined on a bounded domain Ω\Omega of RN\mathbb R^N with zero Dirichlet conditions outside of Ω\Omega. As an application, we derive an original proof of the corresponding fractional Faber-Krahn inequality. We also provide a more classical variational proof of the inequality.Comment: arXiv admin note: substantial text overlap with arXiv:1303.297

    A note on semilinear fractional elliptic equation: analysis and discretization

    Get PDF
    In this paper we study existence, regularity, and approximation of solution to a fractional semilinear elliptic equation of order s∈(0,1)s \in (0,1). We identify minimal conditions on the nonlinear term and the source which leads to existence of weak solutions and uniform L∞L^\infty-bound on the solutions. Next we realize the fractional Laplacian as a Dirichlet-to-Neumann map via the Caffarelli-Silvestre extension. We introduce a first-degree tensor product finite elements space to approximate the truncated problem. We derive a priori error estimates and conclude with an illustrative numerical example

    Numerical methods for time-fractional evolution equations with nonsmooth data: a concise overview

    Get PDF
    Over the past few decades, there has been substantial interest in evolution equations that involving a fractional-order derivative of order α∈(0,1)\alpha\in(0,1) in time, due to their many successful applications in engineering, physics, biology and finance. Thus, it is of paramount importance to develop and to analyze efficient and accurate numerical methods for reliably simulating such models, and the literature on the topic is vast and fast growing. The present paper gives a concise overview on numerical schemes for the subdiffusion model with nonsmooth problem data, which are important for the numerical analysis of many problems arising in optimal control, inverse problems and stochastic analysis. We focus on the following aspects of the subdiffusion model: regularity theory, Galerkin finite element discretization in space, time-stepping schemes (including convolution quadrature and L1 type schemes), and space-time variational formulations, and compare the results with that for standard parabolic problems. Further, these aspects are showcased with illustrative numerical experiments and complemented with perspectives and pointers to relevant literature.Comment: 24 pages, 3 figure
    • …
    corecore