5,719 research outputs found

    Response time analysis of memory-bandwidth- regulated multiframe mixed-criticality systems

    Get PDF
    The multiframe mixed-criticality task model eliminates the pessimism in many systems where the worst-case execution times (WCETs) of successive jobs vary greatly by design, in a known pattern. Existing feasibility analysis techniques for multiframe mixed-criticality tasks are shared-resource-oblivious, hence un-safe for commercial-o -the-shelf (COTS) multicore platforms with a memory controller shared among all cores. Conversely, the feasibility analyses that account for the interference on shared resource(s) in COTS platforms do not leverage theWCET variation in multiframe tasks. This paper extends the state-of-the-art by presenting analysis that incorporates the memory access stall in memory-bandwidth-regulated multiframe mixed-criticality multicore systems. An exhaustive enumeration approach is proposed for this analysis to further enhance the schedulability success ratio. The running time of the exhaustive analysis is improved by proposing a pruning mechanism that eliminates the combinations of interfering job sequences that subsume others. Experimental evaluation, using synthetic task sets, demonstrates up to 72% improvement in terms of schedulability success ratio, compared to frame-agnostic analysis.This work was partially supported by National Funds through FCT/MCTES (Portuguese Foundation for Science and Technology), within the CISTER Research Unit (UIDP/UIDB/04234/2020); by the Operational Competitiveness Programme and Internationalization (COMPETE 2020) under the PT2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and by national funds through the FCT, within project PREFECT (POCI01-0145-FEDER-029119); by FCT through the European Social Fund (ESF) and the Regional Operational Programme (ROP) Norte 2020, under grant 2020.08045.BD.info:eu-repo/semantics/publishedVersio

    A Modeling Framework for Schedulability Analysis of Distributed Avionics Systems

    Get PDF
    This paper presents a modeling framework for schedulability analysis of distributed integrated modular avionics (DIMA) systems that consist of spatially distributed ARINC-653 modules connected by a unified AFDX network. We model a DIMA system as a set of stopwatch automata (SWA) in UPPAAL to analyze its schedulability by classical model checking (MC) and statistical model checking (SMC). The framework has been designed to enable three types of analysis: global SMC, global MC, and compositional MC. This allows an effective methodology including (1) quick schedulability falsification using global SMC analysis, (2) direct schedulability proofs using global MC analysis in simple cases, and (3) strict schedulability proofs using compositional MC analysis for larger state space. The framework is applied to the analysis of a concrete DIMA system.Comment: In Proceedings MARS/VPT 2018, arXiv:1803.0866

    A Backward Algorithm for the Multiprocessor Online Feasibility of Sporadic Tasks

    Full text link
    The online feasibility problem (for a set of sporadic tasks) asks whether there is a scheduler that always prevents deadline misses (if any), whatever the sequence of job releases, which is a priori} unknown to the scheduler. In the multiprocessor setting, this problem is notoriously difficult. The only exact test for this problem has been proposed by Bonifaci and Marchetti-Spaccamela: it consists in modelling all the possible behaviours of the scheduler and of the tasks as a graph; and to interpret this graph as a game between the tasks and the scheduler, which are seen as antagonistic players. Then, computing a correct scheduler is equivalent to finding a winning strategy for the `scheduler player', whose objective in the game is to avoid deadline misses. In practice, however this approach is limited by the intractable size of the graph. In this work, we consider the classical attractor algorithm to solve such games, and introduce antichain techniques to optimise its performance in practice and overcome the huge size of the game graph. These techniques are inspired from results from the formal methods community, and exploit the specific structure of the feasibility problem. We demonstrate empirically that our approach allows to dramatically improve the performance of the game solving algorithm.Comment: Long version of a conference paper accepted to ACSD 201

    Runtime Scheduling, Allocation, and Execution of Real-Time Hardware Tasks onto Xilinx FPGAs Subject to Fault Occurrence

    Get PDF
    This paper describes a novel way to exploit the computation capabilities delivered by modern Field-Programmable Gate Arrays (FPGAs), not only towards a higher performance, but also towards an improved reliability. Computation-specific pieces of circuitry are dynamically scheduled and allocated to different resources on the chip based on a set of novel algorithms which are described in detail in this article. These algorithms consider most of the technological constraints existing in modern partially reconfigurable FPGAs as well as spontaneously occurring faults and emerging permanent damage in the silicon substrate of the chip. In addition, the algorithms target other important aspects such as communications and synchronization among the different computations that are carried out, either concurrently or at different times. The effectiveness of the proposed algorithms is tested by means of a wide range of synthetic simulations, and, notably, a proof-of-concept implementation of them using real FPGA hardware is outlined

    Verification and Optimization of a PLC Control Schedule

    Get PDF
    We report on the use of the SPIN model checker for both the verification of a process control program and the derivation of optimal control schedules. This work was carried out as part of a case study for the EC VHS project (Verification of Hybrid Systems), in which the program for a Programmable Logic Controller (PLC) of an experimental chemical plant had to be designed and verified. The intention of our approach was to see how much could be achieved here using the standard model checking environment of SPIN/Promela. As the symbolic calculations of real-time model checkers can be quite expensive it is interesting to try and exploit the efficiency of established non-real-time model checkers like SPIN in those cases where promising work-arounds seem to exist. In our case we handled the relevant real-time properties of the PLC controller using a time-abstraction technique; for the scheduling we implemented in Promela a so-called variable time advance procedure. For this case study these techniques proved sufficient to verify the design of the controller and derive (time-)optimal schedules with reasonable time and space requirements
    corecore