61 research outputs found

    Innovative Modelling Approaches for the Design, Operation and Control of Complex Energy Systems with Application to Underground Infrastructures

    Get PDF
    The ventilations systems play a key role in underground infrastructures for health and safety of occupants during normal operation as well as during accidents. Their performances are affected by selection of the optimal design, operation and control that is investigated by predicting air flow. The calculation of ventilation flows and their interaction with fires can be done with different modelling approaches that differ in the accuracy and in the required resources. The 3D computational fluid dynamics (CFD) tools approximate the flow behaviour with a great accuracy but they require high computational resources. The one dimensional (1D) models allow a compact description of the system with a low computational time but they are unsuitable to simulate thermal fluid-dynamic scenarios characterized by turbulence and gradients. Innovative tools are necessary in order to make the analysis and optimization of these systems possible and accurate in a reasonable time. This can be achieved both with appropriate numerical approaches to the full domain as the model order reduction techniques and with the domain decompositions methods as the multiscale physical decomposition technique. The reduced order mode techniques as the proper orthogonal decomposition (POD) is based on the snapshots method provides an optimal linear basis for the reconstruction of multidimensional data. This technique has been applied to non-dimensional equations in order to produce a reduced model not depending on the geometry, source terms, boundary conditions and initial conditions. This type of modelling is adapted to the optimization strategies of the design and operation allowing to explore several configuration in reduced times, and for the real time simulation in the control algorithms. The physical decomposition achieved through multiscale approaches uses the accuracy of the CFD code in the near field e.g. the region close to the fire source, and takes advantage of the low computational cost of the 1-D model in the region where gradients in the transversal direction are negligible. In last years, the multiscale approach has been proposed for the analysis of tunnel ventilation. Among the several CFD codes used in this field, the Fire Dynamic Simulator (FDS) is suitable for the multiscale modelling. This is an open source CFD package developed by NIST and VTT and presents the HVAC routine in which the conservation equations of mass, energy and momentum are implemented. Currently, the HVAC module does not allow one to consider heat and mass transfer, which significanltly limits the applications. For these reasons a multiscale simulator has been created through the fully integration of a 1D continuity, momentum, energy and mass transport equation in FDS modifying its source codes. The multiscale simulator thus obtained, is based on a direct coupling by means of a Dirichlet-Neumann strategy. At each 1-D-CFD interface, the exchange flow information occurs prescribing thermo-fluid dynamic boundary conditions. The 1-D mass transport equation computes the diffusion of the exhaust gas from the CFD domain and the relative concentration that is particularly interesting in the case of back layering of smoke. The global convergence of the boundary conditions at each 1-D-CFD interface has been analyzed by monitoring the evolution of thermo-fluid dynamic variables (temperature, velocity, pressure and concentration. The multiscale simulator is suitable for parametric and sensitivity studies of the design and the operation ventilation and fire safety systems. This new tool will be available for all the scientific community. In this thesis, Chapter 1 provides a general introduction to the role of the system ventilation in underground infrastructures and to the innovative modelling strategies proposed for these systems. Chapter 2 offers a description of the 1D network modelling, its fluid-dynamic application to the Frejus tunnel and its thermal application to ground heat exchangers. In Chapter 3, the proper orthogonal decomposition method is presented and its application to the optimal control of the sanitary ventilation for the Padornelo Tunnel is discussed. To demonstrate the applicability of POD method in other fields, boreholes thermal energy storage systems have been considered in same chapter. In particular, a multi-objective optimization strategy is applied to investigate the optimal design of these system and an optimization algorithm for the operation is proposed. Chapter 4 describes the multiscale approach and the relative simulator. The new open tool is used for modeling the ventilation system of the Monte Cuneo road tunnel in case of fire. Results show that in the case of the current configuration of the ventilation system, depending on the atmospheric conditions at portals, smoke might not be fully confined. Significant improvements in terms of safety conditions can be achieved through increase of in smoke extraction, which requires the installation of large dumpers and of deflectors on the jet fans. The developed tool shows to be particularly effective in such analysis, also concerning the evaluation of local conditions for people evacuation and fire-brigades operation

    ECOS 2012

    Get PDF
    The 8-volume set contains the Proceedings of the 25th ECOS 2012 International Conference, Perugia, Italy, June 26th to June 29th, 2012. ECOS is an acronym for Efficiency, Cost, Optimization and Simulation (of energy conversion systems and processes), summarizing the topics covered in ECOS: Thermodynamics, Heat and Mass Transfer, Exergy and Second Law Analysis, Process Integration and Heat Exchanger Networks, Fluid Dynamics and Power Plant Components, Fuel Cells, Simulation of Energy Conversion Systems, Renewable Energies, Thermo-Economic Analysis and Optimisation, Combustion, Chemical Reactors, Carbon Capture and Sequestration, Building/Urban/Complex Energy Systems, Water Desalination and Use of Water Resources, Energy Systems- Environmental and Sustainability Issues, System Operation/ Control/Diagnosis and Prognosis, Industrial Ecology

    IEA ECES Annex 31 Final Report - Energy Storage with Energy Efficient Buildings and Districts: Optimization and Automation

    Get PDF
    At present, the energy requirements in buildings are majorly met from non-renewable sources where the contribution of renewable sources is still in its initial stage. Meeting the peak energy demand by non-renewable energy sources is highly expensive for the utility companies and it critically influences the environment through GHG emissions. In addition, renewable energy sources are inherently intermittent in nature. Therefore, to make both renewable and nonrenewable energy sources more efficient in building/district applications, they should be integrated with energy storage systems. Nevertheless, determination of the optimal operation and integration of energy storage with buildings/districts are not straightforward. The real strength of integrating energy storage technologies with buildings/districts is stalled by the high computational demand (or even lack of) tools and optimization techniques. Annex 31 aims to resolve this gap by critically addressing the challenges in integrating energy storage systems in buildings/districts from the perspective of design, development of simplified modeling tools and optimization techniques

    Optimisation of building energy retrofit strategies using dynamic exergy analysis and exergoeconomics

    Get PDF
    Existing buildings represent one of the most energy intensive sectors in today’s society, where comprehensive building energy retrofit (BER) strategies play a major role in achieving national reduction targets. Despite the efforts made in recent decades through policies and programmes to improve building energy efficiency, the building sector (which proportionally has the highest demand for heat) has the lowest thermodynamic efficiency among all UK economic sectors. As other sectors have shown, exergy and exergoeconomic analyses can be indispensable tools for the design and optimisation of energy systems. Therefore, there is a need for modification of existing BER methods in order to include thermodynamic analysis with the aim improve true efficiency of buildings and minimise its environmental impact. However, a paradigm shift represents a big challenge to common building practice as traditional methods have prioritised typical energy and economic objectives. The aim of this thesis is to develop a methodological framework for the evaluation of BER strategies under exergy analysis and exergoeconomic accounting supported with the integration of the calculation framework into a typical dynamic building simulation tool. There are two original contributions to the knowledge of this research. First, the techno-economic appraisal of BER strategies, based on the typical energy-efficient and cost-benefit method, is enhanced by adding a whole-building exergy analysis combined with an exergoeconomic method (SPECO). Second, ExRET-Opt, a retrofit-oriented simulation tool based on dynamic exergy calculations and exergoeconomic analysis combined with a comprehensive and robust retrofit database, is developed and implemented for this research. In addition, a multi-objective optimisation module based on genetic algorithms is included within the simulation framework in order to improve BER design under different thermodynamic and non-thermodynamic conflicting cost objective functions. Three UK non-domestic case studies implementing a wide range of active and passive retrofit strategies are presented. Results suggest that under identical economic and technical constraints, the inclusion of exergy/exergoeconomic indicators as objective functions into the optimisation procedure has resulted in buildings with similar energy and thermal comfort performance as traditional First Law methods; while providing solutions with better thermodynamic performance and less environmental impact. The approach also demonstrates to provide BER designs with an appropriate balance between active and passive measures, while consistently accounting of irreversibilities and its costs along every subsystem in the building energy system. The developed framework/tool seems like a promising approach to introduce the Second Law into typical building energy practice and for the development of policies, incentives, and taxes based on exergy destruction footprints. Such policies could help highly thermodynamically-efficient or low exergy BER designs to become widely available

    A solar‐driven membrane‐based water desalination/purification system

    Get PDF
    Lack of fresh water has turned into one of the major challenges of the world in the present century. Desalination of brackish or seawater has been proven to be one of the best solutions to cope with this global challenge. Among all the desalination methods, Membrane Distillation (MD) is well known as a cost effective and profitable technology for treating saline water. However, higher energy consumption compared to other separation techniques has been reported as MD’s main drawback. That is why the application of solar energy to provide the thermal energy requirement of MD modules has been the focal point of research in this field in recent years. Despite many studies and efforts that have been conducted to date, solar driven membrane based systems have still many undiscussed aspects. Integrating solar energy and membrane technology is not yet a straightforward matter and has many opportunities for technical and economic improvements. Utilizing new solar technologies, their combination with thermal driven membrane modules, and trying to improve thermal and overall efficiency of this integration can be the bedrock of novel researches. Furthermore, most of the previous studies and research activities have been focused on desalination systems, while the proposed systems have been either inefficient or energy intensive, and other sources for improving water quality such as wastewater is completely under-researched. That is why, this study proposed a novel integrated solar membrane-based desalination and wastewater treatment system taking advantage of technologies such as heat pipes, vacuum tubes, and direct contact membrane distillation (DCMD) modules. A theoretical study was considered to firstly investigate the performance and feasibility of the proposed system and secondly to obtain the optimum physical and operational characteristics of both solar and desalination systems. The theoretical analysis was performed by using appropriate energy and exergy equations which were solved in Matlab software. Heat and mass transfer equations along with energy and mass balance equations were considered in this study. A new multi-step theoretical approach was proposed and developed to model the DCMD unit, while the thermal resistance network method was applied in the simulation of the solar system including vacuum glasses, heat pipes, and manifold. Based on the optimum data obtained from the mathematical models, an experimental rig was designed, manufactured, and tested under different climatic and operational conditions. The system was controlled using a central control unit including a control unit, a National Instrument Data Acquisition (NI-DAQ) system, and a power unit. An application program interface (API) was programmed in the LabVIEW 2014 software to record the data at 10- second intervals. Climatic data including solar radiation, ambient temperature, and wind velocity were collected from the weather station located at Edith Cowan University, Joondalup Campus which is located 23 km north of Perth business district. The comparison of the theoretical and experimental results revealed the capability of the developed model to accurately predict the performance of the proposed system. In addition, the optimum characteristics of the system, including the optimum solar collector’s surface area, feed and permeate streams mass flow rates and temperatures, were determined. The results revealed that the application of this nanofluid as the solar working fluid along with implementing a variable mass flow rate technique significantly improved the overall efficiency of the solar system. Sodium Dodecyl BenzeneSulfonate (SDBS) at 0.1 wt.% was the optimum concentration of SDBS for 0.05 wt.% Al2O3/DI water nanofluid exhibiting the highest stability and thermal conductivity enhancement. The results also showed the high dependency of the DCMD module to the physical (e.g., length) and operational (e.g., feed and permeate mass flow rates) parameters, while its performance was independent of salinity. The highest freshwater production rates in hot and cold seasons were observed to be 3.81 and 2.1 L/m2h, respectively. Moreover, the maximum gained output ratios of the system were around 0.79 and 0.58 in hot and cold seasons, respectively. The results also indicated that the gained output ratio and overall efficiency of the system improved upon application of a cooling unit in the permeate flow loop of the system, indicating the effectiveness of the proposed configuration. In addition, the freshwater production increased up to 37% when the system was equipped with a cooling unit. However, the economic feasibility of implementing the cooling unit needs further investigations. Moreover, the proposed system effectively removed the contaminating metals from wastewater by showing the removal percentage of 96, 89, 96, 100, 100, and 94% for Fe, Mn, Cu, Na, K, and Ca, respectively

    ECOS 2010 Volume I (Thermodynamics)

    Get PDF
    ECOS2010 - 23rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, June 14-17 2010, Lausanne, Switzerland Ecoefficiency and renewable energy for a sustainable world + Developments, application and teaching of methods in: - Basic and applied thermodynamics - Thermoeconomics and environomics - Simulation, improvement and optimization of energy conversion systems - Process design, analysis and integration of thermal and chemical systems - Diagnostic and control of thermal systems - Environmental impact and sustainability of energy systems + Relevant physical systems - Conventional and advanced power plants - Polygeneration and District heating/cooling systems - New technologies in heat pumps, refrigeration and air conditioning - New technologies for electricity (co)generation - Industrial process plants - Energy storage - Carbon Capture and Storage - Hydrogen and natural gas technologies - Biomass conversion systems - Energy conversion systems for transportation - Water Desalination and Treatment + Focus points - Technology, environmental and economical aspects of biofuels and other renewable energies (biomass, geothermal, thermal solar) - Fuel cells systems - Heat pumps and Organic Rankine Cycle

    Decomposition of total primary energy supply: efficiency trends in the EU-28 Member States, 1990-2013

    Get PDF
    • 

    corecore