1,944 research outputs found

    Exemplar-based speech enhancement for deep neural network based automatic speech recognition

    Full text link

    Exploiting Low-dimensional Structures to Enhance DNN Based Acoustic Modeling in Speech Recognition

    Get PDF
    We propose to model the acoustic space of deep neural network (DNN) class-conditional posterior probabilities as a union of low-dimensional subspaces. To that end, the training posteriors are used for dictionary learning and sparse coding. Sparse representation of the test posteriors using this dictionary enables projection to the space of training data. Relying on the fact that the intrinsic dimensions of the posterior subspaces are indeed very small and the matrix of all posteriors belonging to a class has a very low rank, we demonstrate how low-dimensional structures enable further enhancement of the posteriors and rectify the spurious errors due to mismatch conditions. The enhanced acoustic modeling method leads to improvements in continuous speech recognition task using hybrid DNN-HMM (hidden Markov model) framework in both clean and noisy conditions, where upto 15.4% relative reduction in word error rate (WER) is achieved

    Low-rank and Sparse Soft Targets to Learn Better DNN Acoustic Models

    Full text link
    Conventional deep neural networks (DNN) for speech acoustic modeling rely on Gaussian mixture models (GMM) and hidden Markov model (HMM) to obtain binary class labels as the targets for DNN training. Subword classes in speech recognition systems correspond to context-dependent tied states or senones. The present work addresses some limitations of GMM-HMM senone alignments for DNN training. We hypothesize that the senone probabilities obtained from a DNN trained with binary labels can provide more accurate targets to learn better acoustic models. However, DNN outputs bear inaccuracies which are exhibited as high dimensional unstructured noise, whereas the informative components are structured and low-dimensional. We exploit principle component analysis (PCA) and sparse coding to characterize the senone subspaces. Enhanced probabilities obtained from low-rank and sparse reconstructions are used as soft-targets for DNN acoustic modeling, that also enables training with untranscribed data. Experiments conducted on AMI corpus shows 4.6% relative reduction in word error rate

    Investigating NMF Speech Enhancement for Neural Network based Acoustic Models

    Get PDF
    In the light of the improvements that were made in the last years with neural network-based acoustic models, it is an interesting question whether these models are also suited for noise-robust recognition. This has not yet been fully explored, although first experiments confirm this question. Furthermore, preprocessing techniques that improve the robustness should be re-evaluated with these new models. In this work, we present experimental results to address these questions. Acoustic models based on Gaussian mixture models (GMMs), deep neural networks (DNNs), and long short-term memory (LSTM) recurrent neural networks (which have an improved ability to exploit context) are evaluated for their robustness after clean or multi-condition training. In addition, the influence of non-negative matrix factorization (NMF) for speech enhancement is investigated. Experiments are performed with the Aurora-4 database and the results show that DNNs perform slightly better than LSTMs and, as expected, both beat GMMs. Furthermore, speech enhancement is capable of improving the DNN result. Index Terms: robust speech recognition, long short-term memory, speech enhancemen
    • …
    corecore