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Abstract
In the light of the improvements that were made in the last years
with neural network-based acoustic models, it is an interesting
question whether these models are also suited for noise-robust
recognition. This has not yet been fully explored, although first
experiments confirm this question. Furthermore, preprocessing
techniques that improve the robustness should be re-evaluated
with these new models. In this work, we present experimen-
tal results to address these questions. Acoustic models based
on Gaussian mixture models (GMMs), deep neural networks
(DNNs), and long short-term memory (LSTM) recurrent neural
networks (which have an improved ability to exploit context)
are evaluated for their robustness after clean or multi-condition
training. In addition, the influence of non-negative matrix fac-
torization (NMF) for speech enhancement is investigated. Ex-
periments are performed with the Aurora-4 database and the re-
sults show that DNNs perform slightly better than LSTMs and,
as expected, both beat GMMs. Furthermore, speech enhance-
ment is capable of improving the DNN result.
Index Terms: robust speech recognition, long short-term mem-
ory, speech enhancement

1. Introduction
Automatic speech recognition in realistic acoustic conditions
(e. g. involving room reverberation and interfering noise
sources) is still a major research challenge. System robust-
ness can be achieved by several strategies at different levels [1]:
speech/feature enhancement, robust features, or robust acoustic
models. On the one hand, the speech signal can be enhanced
using de-noising algorithms. Monaural signal separation tech-
niques like non-negative matrix factorization (NMF) [2] are
especially useful for cases where multi-channel audio with a
specified microphone placement is not available. On the other
hand, robust models and decoding methods are often employed.
Such approaches addressing the robustness of the back-end of
the recognition system were mostly developed for conventional
systems using Gaussian mixture models (GMMs) for acoustic
modelling.

Recently, deep neural networks (DNNs) gained popularity
in speech recognition due to the improved acoustic modelling
performance compared to GMMs [3], although the underlying
methods had already been developed years ago [4]. In [5, 6],
the potential of DNNs for robust recognition was demonstrated.
It was shown that DNNs could be improved with noise-aware
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training, where the network exploits approximate knowledge of
the noise. In addition, recurrent neural networks (RNNs) using
the long short-term memory (LSTM) architecture [7] have be-
come popular in speech recognition [8, 9, 10, 11, 12]. In [13],
it was shown how LSTM networks can also be used for feature
enhancement preprocessing. Because of their deep topology,
DNN acoustic models can learn higher-level representations of
the features by themselves. In this way, they also learn to pro-
cess context information that is either introduced through fea-
ture frame stacking (for DNNs) or is inherently incorporated
in the model topology (for LSTMs). Exploiting such context is
helpful to improve noise robustness, for example in cases where
a portion of frames within a longer window is spectrally masked
by noise.

It is unclear whether methods for speech enhancement, such
as NMF, that were successfully applied with GMMs are still
useful for DNN acoustic models. In this work we investigate
the influence of NMF speech enhancement on the performance
of GMM, DNN, and LSTM acoustic models in different config-
urations.

In our contributions to the first and second CHiME chal-
lenges, we proposed the application of LSTMs for phoneme
prediction in a multi-stream HMM framework in combination
with a GMM. The systems were highly effective for small-
vocabulary [14] and medium-vocabulary [15] recognition in en-
vironments with highly non-stationary noise and reverberation.
While the GMM made use of NMF-enhanced speech, the ex-
act interaction between NMF enhancement and LSTM acoustic
models was not considered in detail.

There exist only a few studies that investigate the applica-
tion of speech enhancement prior to DNN acoustic modelling.
For example, in the study presented in [16], a speech enhance-
ment method using spatial and spectral cues was capable of im-
proving a DNN system. On the other hand, in [5], a DNN ASR
system could not be improved by applying feature enhancement
in the front-end. Beyond that, the interplay of clean and multi-
condition training with speech enhancement and the influence
of artifacts introduced by enhancement algorithms (requiring
enhanced training data) are less explored with respect to DNN
systems.

The analysis of previous work leaves the following key
questions: how do DNN and LSTM acoustic models compare to
conventional GMM systems for speech recognition in noisy en-
vironments? What are the effects of clean and multi-condition
training? Furthermore, what is the influence of NMF speech
enhancement on the three different acoustic models? In partic-
ular, in which cases is it necessary to perform additional speech
enhancement on the training data (which will be referred to as
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retraining)? The contribution of the present work is to address
these questions with a series of experiments involving GMM,
DNN, and LSTM acoustic models, using NMF speech enhance-
ment for preprocessing.

Next, we describe the employed methods for acoustic mod-
elling and speech enhancement. The experiments use the
Aurora-4 experimental framework and are described in Section
3, along with a discussion of the results. Our conclusions follow
in Section 4.

2. Methodology
The employed GMM and DNN systems are implemented in
the Kaldi toolkit [17] and we used the implementations that are
available as “recipes” for download.

2.1. GMM Acoustic Models

The GMM-HMM system is based on context-dependent tied-
state triphone models. Each model has three HMM states and
in total, there are around 2 000 distinct HMM states. Models are
trained with maximum-likelihood parameter estimation. In ad-
dition, linear discriminant analysis (LDA) [18] and maximum
likelihood linear transform (MLLT) [19] are employed for fea-
ture decorrelation. LDA is applied on stacked MFCC feature
vectors (13 coefficients over seven consecutive frames), reduc-
ing the 91-dimensional vector to 40 dimensions.

2.2. Deep Neural Networks

Simply put, a deep neural network (DNN) is a multi-layer per-
ceptron with more than one hidden layer. Multiple hidden lay-
ers are stacked on top of each other, which allows to extract
higher-level information in the upper layers.

Such networks usually employ large numbers of parame-
ters, because of the multiple layers with a high number of hid-
den units. This makes these networks difficult to train, and ran-
dom initialisation of the parameters can result in a poor local
optimum. In order to overcome this problem, pre-training is
used to improve the parameter initialisation prior to training.
The networks are initialised layer by layer in an unsupervised
manner by treating each pair of layers as a restricted Boltzmann
machine (RBM) [20].

2.3. LSTM Networks

The third acoustic modelling method employed in this study is
the use of long short-term memory (LSTM) recurrent neural
networks (RNNs).

Compared to a conventional RNN, the hidden units are re-
placed by so-called memory blocks. These memory blocks can
store information in the cell variable ct. In this way, the net-
work can exploit long-range temporal context. Each memory
block consists of a memory cell and three gates: input, output,
and forget gate, as depicted in Figure 1. These gates control
the behaviour of the memory block. The forget gate can re-
set the cell variable which leads to ‘forgetting’ the stored input
ct, while the input and output gates are responsible for reading
from the input xt and writing to the output ht, respectively:

ct = f t ⊗ ct−1 + it ⊗ tanh(W xcxt +W hcht−1 + bc) (1)

ht = ot ⊗ tanh(ct), (2)

where ⊗ denotes element-wise multiplication and tanh is also
applied in an element-wise fashion. The variables it, ot, and f t

are the outputs of the input gates, output gates and forget gates,
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Figure 1: Long short-term memory block, containing a memory
cell and the input, output and forget gates. T denotes a delay of
one time step.

respectively, bc is a bias term, and W is the weight matrix.
Each memory block can be regarded as a separate, independent
unit.

In addition to LSTM memory blocks, we use bidirectional
RNNs [21]. A bidirectional RNN exploits context from both
temporal directions, which makes it suitable for speech recog-
nition, utterances are decoded as a whole. This is achieved by
processing the input data in both directions with two separate
hidden layers. Both hidden layers are then fed to the output
layer. The combination of bidirectional RNNs and LSTM mem-
ory blocks leads to bidirectional LSTM networks [22]. Similar
to the concept of DNNs, employing multiple hidden layers al-
lows the system to “learn” higher-level feature representations,
resulting in a deep LSTM.

The LSTM network is trained with on-line gradient descent
using backpropagation through time, with cross entropy as an
error function. Our GPU-enabled LSTM software is publicly
available1.

2.4. DNN and LSTM Acoustic Modelling

DNNs and LSTM networks are used for acoustic modelling in a
hybrid HMM setup. In this method, the network predicts HMM
states, resulting in state posterior probabilities. These posteriors
are transformed to state likelihoods via Bayes’ rule (using state
probabilities determined from the forced alignment) and then
substitute the GMM likelihoods during HMM decoding.

While DNNs exploit context through feature frame stack-
ing, usually having access to 7-11 frames, context modelling is
inherently incorporated in the complex LSTM topology. The
LSTM is structured better due to the addition of the different
gates. Therefore it is expected that LSTMs require a smaller
number of trainable parameters compared to DNNs, and this is
why pre-training is presumably not necessary for LSTMs.

2.5. NMF Speech Enhancement

The speech enhancement pre-processing component of our sys-
tem uses NMF-based spectrogram factorisation algorithms pre-
viously employed in noise robust ASR experiments on Aurora-
2, SPEECON and CHiME/GRID datasets [23, 24]. In short,
noisy Mel-magnitude spectra are decomposed as a sparse, non-
negative linear combination of speech and noise dictionary
atoms. The speech atom activations are then used to obtain an
estimate of the clean speech segments. In order to capture time

1https://sourceforge.net/p/currennt



context, the atoms span multiple time frames and utterances are
decoded using a sliding-window method:

V ≈ V̂ = Λ(s) + Λ(n) =

J∑
j=1

W
(s)
j hj +

K∑
k=1

W
(n)
k hk, (3)

where V is a B × T spectrogram representing the current win-
dow of the observed noisy speech, B is the number of spectral
bands, and T the number of consecutive frames per windowed
spectrogram. The spectrograms Λ(s) and Λ(n) are estimates
for the speech and noise content of the signal, respectively, W
are B × T dictionary atoms and h their activation weights. We
denote the number of speech atoms by J and similarly the noise
dictionary size by K. The NMF dictionary atoms are formed by
exemplars, spectrograms directly extracted from spectrograms
[25].

The coefficients hj and hk are obtained through supervised
NMF by minimizing the KL-divergence between V and V̂ reg-
ularised through a sparsity constraint on the activations [23].
After factorisation, speech and noise spectrogram estimates are
generated for full utterances by averaging the frame estimates
of overlapping windows. These are used to estimate a time-
varying filter in the linear frequency domain to perform speech
enhancement of the original noisy speech with the procedure
described in [23]. The choice in favor of speech enhancement
rather than feature enhancement leaves more freedom in the fea-
ture extraction and in the architecture of the back-end recog-
niser.

3. Experiments
3.1. Aurora-4 Database

The Aurora-4 experimental framework provides a database that
is based on the WSJ-0 corpus of read speech. Different test-
ing conditions are evaluated: clean speech (A, with 330 utter-
ances), additive noise (B, 1 980 utterances), microphone varia-
tion (C, 330 utterances), and noise + microphone variation (D,
1 980 utterances), all from 8 speakers, summing up to 4 620 ut-
terances. For the noisy test utterances, six noise types (street
traffic, train terminals and stations, cars, babble, restaurants,
and airports) were artificially added at varying SNR between
5 and 15 dB. For model training, a clean training set as well as a
multi-condition training (MCT) set are provided, both contain-
ing 7 138 utterances from 83 speakers. The MCT set contains
both clean and noisy utterances, all from different microphones.
In addition, a development set is provided with the same parti-
tion as the evaluation test set (4 620 utterances under different
conditions from 10 speakers).

3.2. Experimental Setup

The configuration of the GMM acoustic model was already de-
scribed in Section 2.1. Instead of MFCC features, the DNN
and LSTM models work with Mel filterbank coefficients as in-
put. The DNN uses 40 coefficients, with a context size of 11
frames, summing up to 440 input features in total; the LSTM
employs 26 coefficients (plus root-mean-square energy) along
with delta coefficients, and the LSTM inputs are globally mean
and variance normalised. For the DNN, the number of hidden
layers is set to 7, each with 2 048 units, resulting in roughly
30 m weights. Due to its advantageous topology, the LSTM re-
quires less parameters and it is thus comprised of 2 hidden lay-
ers, each with 250 units (125 per temporal direction). This sums
to roughly 3 m weights. Both the DNN and LSTM systems are
trained with an early stopping strategy, using the development

Table 1: WER (%) for different systems with or without multi-
condition training (MCT), using original unenhanced data.
Lowest scores are highlighted in bold font.

System MCT A B C D Avg.

GMM - 5.1 44.6 25.0 64.7 49.0
DNN - 3.1 50.9 48.7 69.7 55.4

LSTM - 5.9 63.2 46.1 85.7 67.5

GMM 3 8.5 13.4 13.1 27.4 19.0
DNN 3 3.6 7.9 10.4 22.4 14.0

LSTM 3 5.5 9.7 12.5 22.0 14.9

set for validation. In the case of clean training, only the clean
part of the development set is used for validation. State tar-
gets for training are obtained through a forced alignment of the
GMM system that uses the same setup.

The speech enhancement operates on Mel-magnitude spec-
tra, with B = 40 bands, using 25 ms hamming windows with
10 ms hop size. The NMF window length is T = 15 frames
with a window shift of one frame. The sparsity for the speech
was set at 0.075 times the average L1 norm of the fixed part of
the dictionary (speech and noise jointly). The noise sparsity was
set at 0.5 times the speech sparsity. The number of iterations
was kept constant at 350. These values (except the number of
iterations) were taken from earlier work on the CHiME dataset
[15].

The speech dictionary consists of 10 000 speech exemplars
extracted by random sampling. In contrast to earlier work,
the dictionary consists of exemplars extracted from the clean
speech in the multicondition training data, thus covering mul-
tiple microphone characteristics. Evaluations (not shown) re-
vealed that using only a subset of the speakers for training (im-
plied by the subset of the multicondition training data corre-
sponding to clean speech) does not impact the accuracy.

Two noise dictionaries were used: a fixed noise dictionary
of 5 000 exemplars extracted randomly from the multicondition
training data (by subtracting the clean speech), and a small noise
dictionary extracted from cyclicy shifted versions of the first 15
frames of the noisy utterance that is being decoded (15 exem-
plars). This results in a total number of 15 015 exemplars in the
dictionary.

3.3. Experiments and Results

The first experiment compares the three acoustic modelling
methods, with the results given in Table 1. Unsurprisingly, the
performance difference between results with clean training and
MCT show that MCT is necessary to prepare the models for un-
seen testing conditions, since no other model adaptation tech-
niques are applied in this experiment. Interestingly, the GMM
can cope better with such unseen test conditions compared to
the DNN and LSTM systems. When using MCT, the GMM
(19.0 %) falls back behind the two neural network-based acous-
tic models, the DNN (14.0 %) being slightly better than the
LSTM (14.9 %).

Next, we apply NMF speech enhancement on the test data,
keeping the trained models unchanged (i. e. without retrain-
ing). In this way, NMF might improve the speech quality, but
at the same time introduce artifacts the models may not be ro-
bust against. Table 2 lists the results for this second experiment.
With clean models, enhancing the test data improves the per-
formance of the GMM and LSTM systems in noisy conditions.
The multi-condition GMM is robust against the NMF artifacts
(except in condition C) and the overall performance is slightly



Table 2: WER (%) for different systems with or without multi-
condition training (MCT), using original unenhanced data for
training and NMF-enhanced data for testing. Lowest scores are
highlighted in bold font.

System MCT A B C D Avg.

GMM - 5.5 22.8 25.2 43.8 30.8
DNN - 13.4 45.7 58.3 69.6 54.5

LSTM - 15.3 44.7 52.4 65.6 52.1

GMM 3 8.4 11.6 20.6 26.3 18.3
DNN 3 9.3 15.8 29.9 36.3 25.1

LSTM 3 10.7 16.5 23.6 34.0 24.1

Table 3: WER (%) for different systems with or without multi-
condition training (MCT), using NMF-enhanced data for train-
ing and testing. Lowest scores are highlighted in bold font.

System MCT A B C D Avg.

GMM - 5.5 24.2 26.7 44.9 31.9
DNN - 3.1 32.4 38.4 54.1 40.1

LSTM - 5.2 50.2 44.2 74.8 57.1

GMM 3 8.0 11.5 18.3 26.3 18.1
DNN 3 3.6 7.3 11.2 20.7 13.1

LSTM 3 6.0 9.2 12.9 22.8 15.1

improved (18.3 %). Results for multi-condition DNN (25.1 %)
and LSTM (24.1 %) acoustic models undergo a deterioration
when only the test data are enhanced, indicating that these mod-
els cannot cope with the artifacts introduced by the NMF.

Finally, experiments are performed where test and training
data are processed with NMF (i. e. using retraining), which en-
ables the models to “learn” the influence of artifacts. The re-
sults of this experiment are given in Table 3. This setup leads
to an improvement of the clean DNN performance, while the
clean GMM undergoes a small deterioration compared to the
second experiment. The more interesting results are obtained
with MCT. Compared to unprocessed data (Table 1), the GMM
performance under the influence of noise is improved (18.1 %).
Overall, the effect of retraining is small for the multi-condition
GMM (compared to Table 2), except in condition C, where the
artifacts introduced by NMF are partly compensated through re-
training. What is more, NMF is also capable of improving the
DNN system by almost 1 % absolute (13.1 %). The LSTM per-
formance is only improved in noisy environments and in total
gets marginally worse (15.1 %).

Regarding the NMF results, the most critical finding is the
impact of channel mismatch in test set C and D. The results
show that especially for the GMM, but even with a DNN, when
using retraining and MCT the results on set C are actually worse
than those obtained without preprocessing. This means the ar-
tifacts introduced by the channel mismatch of the test data are
particularly severe, since the DNN is able to successfully learn
the impact of artifacts introduced by NMF on clean speech.

Even though the dictionary is extracted from the multicon-
dition training data in an attempt to provide some robustness
against channel mismatches, additional evaluations (not shown)
revealed that this did in fact not perform any better than using a
dictionary extracted from the clean speech training data. Obvi-
ously, speech in the multicondition training data is not represen-
tative for the mismatch observed in the test data - as a result, the
linear additive model underlying NMF is unable to model the
convolutive effect of the channel. For practical applications it

Table 4: State prediction frame error rate (%) for different DNN
and LSTM systems using multi-condition training, for the train-
ing (train) and development (dev) sets. Lowest scores are high-
lighted in bold font.

System Layers # weights train dev avg. WER

LSTM 2x250 3.1 m 26.3 37.6 14.9
LSTM 3x250 4.6 m 26.6 38.1 -
LSTM 2x125 1.1 m 31.7 39.1 -
DNN 7x2048 30.2 m 44.1 54.7 14.0

will therefore be essential that the convolutive effect is modeled
explicitly. Preliminary research on this is reported in [26].

Finally, we analysed the LSTM performance in more de-
tail. For this purpose, we investigated the frame error rate (on
the training and development set) for the state predictions of
different LSTM and DNN networks. These results are given in
Table 4. The first row shows the same LSTM that was employed
for HMM decoding (see Table 1). In order to verify the choice
of LSTM configuration, two more setups were tested. First, an
additional layer was added, which did not improve frame error
rate. The necessity of the size of the hidden layers was verified
by halving this size, which resulted in a degradation in perfor-
mance. For comparison, the frame error rate is also reported for
the DNN system. The ability to predict HMM states of the DNN
is much worse compared to the LSTM, although the DNN per-
forms better in terms of WER. Our findings support the results
presented in [9], where a similar effect was observed. In that
work, it was suspected that the main reasons for this are that the
frame-wise error does not take into account the language model,
and that the LSTM might learn a word-level language model it-
self, which interferes with the language model during decoding.
In fact, our experiments also showed that for LSTM decoding,
much higher language model weights are necessary compared
to DNN decoding.

4. Conclusions
We compared acoustic models based on GMMs, DNNs, and
LSTMs for their robustness and investigated the influence of
NMF speech enhancement. The results were obtained with the
Aurora-4 experimental framework and showed that DNN and
LSTM require MCT, but greatly outperform the GMM in this
case. The LSTM performed worse than the DNN, although the
frame-wise state prediction error was lower for LSTM. On the
one hand, the LSTM requires only one tenth of the number of
parameters of the DNN, but on the other hand, the training pro-
cedure is more complex (backpropagation through time). In-
creasing the number of LSTM parameters brought no improve-
ment; network pretraining (as done for the DNN) might help in
this case.

NMF enhancement with retraining improves all systems
substantially when using clean training data, although the clean
LSTM performs better when trained on unprocessed data. Even
with multi-condition DNN acoustic models, NMF enhancement
still brings improvements, and the best overall results are ob-
tained with NMF. At the same time, NMF is shown to be quite
sensitive to the channel mismatch, so future research should fo-
cus on this aspect. A possible line of research would be the
techniques proposed in [26]. We can conclude that even with
MCT and a DNN or similar architecture, the use of additional
preprocessing for noise robustness can be effective and warrants
further investigation.
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