7 research outputs found

    A Formal Proof of the Expressiveness of Deep Learning

    Get PDF
    International audienceDeep learning has had a profound impact on computer science in recent years, with applications to image recognition, language processing, bioinformatics, and more. Recently , Cohen et al. provided theoretical evidence for the superiority of deep learning over shallow learning. We formalized their mathematical proof using Isabelle/HOL. The Isabelle development simplifies and generalizes the original proof, while working around the limitations of the HOL type system. To support the formalization, we developed reusable libraries of formalized mathematics, including results about the matrix rank, the Borel measure, and multivariate polynomials as well as a library for tensor analysis

    Algebraically Closed Fields in Isabelle/HOL

    Get PDF
    A fundamental theorem states that every field admits an algebraically closed extension. Despite its central importance, this theorem has never before been formalised in a proof assistant. We fill this gap by documenting its formalisation in Isabelle/HOL, describing the difficulties that impeded this development and their solutions.ERC Advanced Grant ALEXANDRIA (Project GA 742178

    A Transfinite Knuth-Bendix Order for Lambda-Free Higher-Order Terms

    Get PDF
    International audienceWe generalize the Knuth-Bendix order (KBO) to higher-order terms without λ-abstraction. The restriction of this new order to first-order terms coincides with the traditional KBO. The order has many useful properties, including transitivity, the subterm property, compatibility with contexts (monotonicity), stability under substitution, and well-foundedness. Transfinite weights and argument coefficients can also be supported. The order appears promising as the basis of a higher-order superposition calculus
    corecore