4 research outputs found

    Antimatroids and Balanced Pairs

    Full text link
    We generalize the 1/3-2/3 conjecture from partially ordered sets to antimatroids: we conjecture that any antimatroid has a pair of elements x,y such that x has probability between 1/3 and 2/3 of appearing earlier than y in a uniformly random basic word of the antimatroid. We prove the conjecture for antimatroids of convex dimension two (the antimatroid-theoretic analogue of partial orders of width two), for antimatroids of height two, for antimatroids with an independent element, and for the perfect elimination antimatroids and node search antimatroids of several classes of graphs. A computer search shows that the conjecture is true for all antimatroids with at most six elements.Comment: 16 pages, 5 figure

    The max-flow min-cut property of two-dimensional affine convex geometries

    Get PDF
    AbstractIn a matroid, (X,e) is a rooted circuit if X is a set not containing element e and X∪{e} is a circuit. We call X a broken circuit of e. A broken circuit clutter is the collection of broken circuits of a fixed element. Seymour [The matroids with the max-flow min-cut property, J. Combinatorial Theory B 23 (1977) 189–222] proved that a broken circuit clutter of a binary matroid has the max-flow min-cut property if and only if it does not contain a minor isomorphic to Q6. We shall present an analogue of this result in affine convex geometries. Precisely, we shall show that a broken circuit clutter of an element e in a convex geometry arising from two-dimensional point configuration has the max-flow min-cut property if and only if the configuration has no subset forming a ‘Pentagon’ configuration with center e.Firstly we introduce the notion of closed set systems. This leads to a common generalization of rooted circuits both of matroids and convex geometries (antimatroids). We further study some properties of affine convex geometries and their broken circuit clutters
    corecore