237 research outputs found

    On the Wilf-Stanley limit of 4231-avoiding permutations and a conjecture of Arratia

    Get PDF
    We construct a sequence of finite automata that accept subclasses of the class of 4231-avoiding permutations. We thereby show that the Wilf-Stanley limit for the class of 4231-avoiding permutations is bounded below by 9.35. This bound shows that this class has the largest such limit among all classes of permutations avoiding a single permutation of length 4 and refutes the conjecture that the Wilf-Stanley limit of a class of permutations avoiding a single permutation of length k cannot exceed (k-1)^2.Comment: Submitted to Advances in Applied Mathematic

    Generalized permutation patterns - a short survey

    Get PDF
    An occurrence of a classical pattern p in a permutation π is a subsequence of π whose letters are in the same relative order (of size) as those in p. In an occurrence of a generalized pattern, some letters of that subsequence may be required to be adjacent in the permutation. Subsets of permutations characterized by the avoidance—or the prescribed number of occurrences— of generalized patterns exhibit connections to an enormous variety of other combinatorial structures, some of them apparently deep. We give a short overview of the state of the art for generalized patterns

    Upper bounds for the Stanley-Wilf limit of 1324 and other layered patterns

    Get PDF
    We prove that the Stanley-Wilf limit of any layered permutation pattern of length \ell is at most 424\ell^2, and that the Stanley-Wilf limit of the pattern 1324 is at most 16. These bounds follow from a more general result showing that a permutation avoiding a pattern of a special form is a merge of two permutations, each of which avoids a smaller pattern. If the conjecture is true that the maximum Stanley-Wilf limit for patterns of length \ell is attained by a layered pattern then this implies an upper bound of 424\ell^2 for the Stanley-Wilf limit of any pattern of length \ell. We also conjecture that, for any k0k\ge 0, the set of 1324-avoiding permutations with kk inversions contains at least as many permutations of length n+1n+1 as those of length nn. We show that if this is true then the Stanley-Wilf limit for 1324 is at most eπ2/313.001954e^{\pi\sqrt{2/3}} \simeq 13.001954
    corecore