1,548 research outputs found

    Continuous-time integral dynamics for Aggregative Game equilibrium seeking

    Get PDF
    In this paper, we consider continuous-time semi-decentralized dynamics for the equilibrium computation in a class of aggregative games. Specifically, we propose a scheme where decentralized projected-gradient dynamics are driven by an integral control law. To prove global exponential convergence of the proposed dynamics to an aggregative equilibrium, we adopt a quadratic Lyapunov function argument. We derive a sufficient condition for global convergence that we position within the recent literature on aggregative games, and in particular we show that it improves on established results

    A Douglas-Rachford splitting for semi-decentralized equilibrium seeking in generalized aggregative games

    Full text link
    We address the generalized aggregative equilibrium seeking problem for noncooperative agents playing average aggregative games with affine coupling constraints. First, we use operator theory to characterize the generalized aggregative equilibria of the game as the zeros of a monotone set-valued operator. Then, we massage the Douglas-Rachford splitting to solve the monotone inclusion problem and derive a single layer, semi-decentralized algorithm whose global convergence is guaranteed under mild assumptions. The potential of the proposed Douglas-Rachford algorithm is shown on a simplified resource allocation game, where we observe faster convergence with respect to forward-backward algorithms.Comment: arXiv admin note: text overlap with arXiv:1803.1044

    Quasivariational Inequalities for a Dynamic Competitive Economic Equilibrium Problem

    Get PDF
    The aim of this paper is to consider a dynamic competitive economic equilibrium problem in terms of maximization of utility functions and of excess demand functions. This equilibrium problem is studied by means of a time-dependent quasivariational inequality which is set in the Lebesgue space . This approach allows us to obtain an existence result of time-dependent equilibrium solutions

    Computing all solutions of Nash equilibrium problems with discrete strategy sets

    Full text link
    The Nash equilibrium problem is a widely used tool to model non-cooperative games. Many solution methods have been proposed in the literature to compute solutions of Nash equilibrium problems with continuous strategy sets, but, besides some specific methods for some particular applications, there are no general algorithms to compute solutions of Nash equilibrium problems in which the strategy set of each player is assumed to be discrete. We define a branching method to compute the whole solution set of Nash equilibrium problems with discrete strategy sets. This method is equipped with a procedure that, by fixing variables, effectively prunes the branches of the search tree. Furthermore, we propose a preliminary procedure that by shrinking the feasible set improves the performances of the branching method when tackling a particular class of problems. Moreover, we prove existence of equilibria and we propose an extremely fast Jacobi-type method which leads to one equilibrium for a new class of Nash equilibrium problems with discrete strategy sets. Our numerical results show that all proposed algorithms work very well in practice

    Liquidity risks on power exchanges

    Get PDF
    Financial derivatives are important hedging tool for asset’s manager. Electricity is by its very nature the most volatile commodity, which creates big incentive to share the risk among the market participants through financial contracts. But, even if volume of derivatives contracts traded on Power Exchanges has been growing since the beginning of the restructuring of the sector, electricity markets continue to be considerably less liquid than other commodities. This paper tries to quantify the effect of this insufficient liquidity on power exchange, by introducing a pricing equilibrium model for power derivatives where agents can not hedge up to their desired level. Mathematically, the problem is a two stage stochastic Generalized Nash Equilibrium and its solution is not unique. Computing a large panel of solutions, we show how the risk premium and player’s profit are affected by the illiquidity.illiquidity, electricity, power exchange, artitrage, generalized Nash Equilibrium, equilibrium based model, coherent risk valuation
    corecore