4,016 research outputs found

    Asset pricing under rational learning about rare disasters : [Version 28 Juli 2011]

    Get PDF
    This paper proposes a new approach for modeling investor fear after rare disasters. The key element is to take into account that investorsā€™ information about fundamentals driving rare downward jumps in the dividend process is not perfect. Bayesian learning implies that beliefs about the likelihood of rare disasters drop to a much more pessimistic level once a disaster has occurred. Such a shift in beliefs can trigger massive declines in price-dividend ratios. Pessimistic beliefs persist for some time. Thus, belief dynamics are a source of apparent excess volatility relative to a rational expectations benchmark. Due to the low frequency of disasters, even an infinitely-lived investor will remain uncertain about the exact probability. Our analysis is conducted in continuous time and offers closed-form solutions for asset prices. We distinguish between rational and adaptive Bayesian learning. Rational learners account for the possibility of future changes in beliefs in determining their demand for risky assets, while adaptive learners take beliefs as given. Thus, risky assets tend to be lower-valued and price-dividend ratios vary less under adaptive versus rational learning for identical priors. Keywords: beliefs, Bayesian learning, controlled diffusions and jump processes, learning about jumps, adaptive learning, rational learning. JEL classification: D83, G11, C11, D91, E21, D81, C6

    Generative Adversarial Networks for Financial Trading Strategies Fine-Tuning and Combination

    Get PDF
    Systematic trading strategies are algorithmic procedures that allocate assets aiming to optimize a certain performance criterion. To obtain an edge in a highly competitive environment, the analyst needs to proper fine-tune its strategy, or discover how to combine weak signals in novel alpha creating manners. Both aspects, namely fine-tuning and combination, have been extensively researched using several methods, but emerging techniques such as Generative Adversarial Networks can have an impact into such aspects. Therefore, our work proposes the use of Conditional Generative Adversarial Networks (cGANs) for trading strategies calibration and aggregation. To this purpose, we provide a full methodology on: (i) the training and selection of a cGAN for time series data; (ii) how each sample is used for strategies calibration; and (iii) how all generated samples can be used for ensemble modelling. To provide evidence that our approach is well grounded, we have designed an experiment with multiple trading strategies, encompassing 579 assets. We compared cGAN with an ensemble scheme and model validation methods, both suited for time series. Our results suggest that cGANs are a suitable alternative for strategies calibration and combination, providing outperformance when the traditional techniques fail to generate any alpha

    Making Good on LSTMs' Unfulfilled Promise

    Get PDF
    LSTMs promise much to financial time-series analysis, temporal and cross-sectional inference, but we find that they do not deliver in a real-world financial management task. We examine an alternative called Continual Learning (CL), a memory-augmented approach, which can provide transparent explanations, i.e. which memory did what and when. This work has implications for many financial applications including credit, time-varying fairness in decision making and more. We make three important new observations. Firstly, as well as being more explainable, time-series CL approaches outperform LSTMs as well as a simple sliding window learner using feed-forward neural networks (FFNN). Secondly, we show that CL based on a sliding window learner (FFNN) is more effective than CL based on a sequential learner (LSTM). Thirdly, we examine how real-world, time-series noise impacts several similarity approaches used in CL memory addressing. We provide these insights using an approach called Continual Learning Augmentation (CLA) tested on a complex real-world problem, emerging market equities investment decision making. CLA provides a test-bed as it can be based on different types of time-series learners, allowing testing of LSTM and FFNN learners side by side. CLA is also used to test several distance approaches used in a memory recall-gate: Euclidean distance (ED), dynamic time warping (DTW), auto-encoders (AE) and a novel hybrid approach, warp-AE. We find that ED under-performs DTW and AE but warp-AE shows the best overall performance in a real-world financial task

    The Santa Fe Artificial Stock Market Re-Examined - Suggested Corrections

    Get PDF
    This paper rectifies a design problem in the Santa Fe Artificial Stock Market Model. Due to a faulty mutation operator, the resulting bit distribution in the classifier system was systematically upwardly biased, thus suggesting increased levels of technical trading for smaller GA-invocation intervals. The corrected version partly supports the Marimon-Sargent-Hypothesis that adaptive classifier agents in an artificial stock market will always discover the homogeneous rational expectation equilibrium. While agents always find the correct solution of non-bit usage, analyzing the time series data still suggests the existence of two different regimes depending on learning speed. Finally, classifier systems and neural networks as data mining techniques in artificial stock markets are discussed.Asset Pricing; Learning; Financial Time Series; Genetic Algorithms; Classifier Systems; Agent-Based Simulation
    • ā€¦
    corecore