1,498 research outputs found

    Examples of Ill-Behaved Central Paths in Convex Optimization

    Get PDF
    This paper presents some examples of ill-behaved central paths in convex optimization. Some contain infinitely many fixed length central segments; others manifest oscillations with infinite variation. These central paths can be encountered even for infinitely differentiable data

    Generalization Bounds in the Predict-then-Optimize Framework

    Full text link
    The predict-then-optimize framework is fundamental in many practical settings: predict the unknown parameters of an optimization problem, and then solve the problem using the predicted values of the parameters. A natural loss function in this environment is to consider the cost of the decisions induced by the predicted parameters, in contrast to the prediction error of the parameters. This loss function was recently introduced in Elmachtoub and Grigas (2017) and referred to as the Smart Predict-then-Optimize (SPO) loss. In this work, we seek to provide bounds on how well the performance of a prediction model fit on training data generalizes out-of-sample, in the context of the SPO loss. Since the SPO loss is non-convex and non-Lipschitz, standard results for deriving generalization bounds do not apply. We first derive bounds based on the Natarajan dimension that, in the case of a polyhedral feasible region, scale at most logarithmically in the number of extreme points, but, in the case of a general convex feasible region, have linear dependence on the decision dimension. By exploiting the structure of the SPO loss function and a key property of the feasible region, which we denote as the strength property, we can dramatically improve the dependence on the decision and feature dimensions. Our approach and analysis rely on placing a margin around problematic predictions that do not yield unique optimal solutions, and then providing generalization bounds in the context of a modified margin SPO loss function that is Lipschitz continuous. Finally, we characterize the strength property and show that the modified SPO loss can be computed efficiently for both strongly convex bodies and polytopes with an explicit extreme point representation.Comment: Preliminary version in NeurIPS 201

    Analysis of some interior point continuous trajectories for convex programming

    Get PDF
    In this paper, we analyse three interior point continuous trajectories for convex programming with general linear constraints. The three continuous trajectories are derived from the primal–dual path-following method, the primal–dual affine scaling method and the central path, respectively. Theoretical properties of the three interior point continuous trajectories are fully studied. The optimality and convergence of all three interior point continuous trajectories are obtained for any interior feasible point under some mild conditions. In particular, with proper choice of some parameters, the convergence for all three interior point continuous trajectories does not require the strict complementarity or the analyticity of the objective function. These results are new in the literature

    The Convergent Generalized Central Paths for Linearly Constrained Convex Programming

    Get PDF
    The convergence of central paths has been a focal point of research on interior point methods. Quite detailed analyses have been made for the linear case. However, when it comes to the convex case, even if the constraints remain linear, the problem is unsettled. In [Math. Program., 103 (2005), pp. 63–94], Gilbert, Gonzaga, and Karas presented some examples in convex optimization, where the central path fails to converge. In this paper, we aim at finding some continuous trajectories which can converge for all linearly constrained convex optimization problems under some mild assumptions. We design and analyze a class of continuous trajectories, which are the solutions of certain ordinary differential equation (ODE) systems for solving linearly constrained smooth convex programming. The solutions of these ODE systems are named generalized central paths. By only assuming the existence of a finite optimal solution, we are able to show that, starting from any interior feasible point, (i) all of the generalized central paths are convergent, and (ii) the limit point(s) are indeed the optimal solution(s) of the original optimization problem. Furthermore, we illustrate that for the key example of Gilbert, Gonzaga, and Karas, our generalized central paths converge to the optimal solutions

    An Algorithmic Theory of Dependent Regularizers, Part 1: Submodular Structure

    Full text link
    We present an exploration of the rich theoretical connections between several classes of regularized models, network flows, and recent results in submodular function theory. This work unifies key aspects of these problems under a common theory, leading to novel methods for working with several important models of interest in statistics, machine learning and computer vision. In Part 1, we review the concepts of network flows and submodular function optimization theory foundational to our results. We then examine the connections between network flows and the minimum-norm algorithm from submodular optimization, extending and improving several current results. This leads to a concise representation of the structure of a large class of pairwise regularized models important in machine learning, statistics and computer vision. In Part 2, we describe the full regularization path of a class of penalized regression problems with dependent variables that includes the graph-guided LASSO and total variation constrained models. This description also motivates a practical algorithm. This allows us to efficiently find the regularization path of the discretized version of TV penalized models. Ultimately, our new algorithms scale up to high-dimensional problems with millions of variables
    • …
    corecore