5,891 research outputs found

    Representation Learning: A Review and New Perspectives

    Full text link
    The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning

    Learning An Invariant Speech Representation

    Get PDF
    Recognition of speech, and in particular the ability to generalize and learn from small sets of labelled examples like humans do, depends on an appropriate representation of the acoustic input. We formulate the problem of finding robust speech features for supervised learning with small sample complexity as a problem of learning representations of the signal that are maximally invariant to intraclass transformations and deformations. We propose an extension of a theory for unsupervised learning of invariant visual representations to the auditory domain and empirically evaluate its validity for voiced speech sound classification. Our version of the theory requires the memory-based, unsupervised storage of acoustic templates -- such as specific phones or words -- together with all the transformations of each that normally occur. A quasi-invariant representation for a speech segment can be obtained by projecting it to each template orbit, i.e., the set of transformed signals, and computing the associated one-dimensional empirical probability distributions. The computations can be performed by modules of filtering and pooling, and extended to hierarchical architectures. In this paper, we apply a single-layer, multicomponent representation for phonemes and demonstrate improved accuracy and decreased sample complexity for vowel classification compared to standard spectral, cepstral and perceptual features.Comment: CBMM Memo No. 022, 5 pages, 2 figure

    Text-Independent Speaker Identification using Statistical Learning

    Get PDF
    The proliferation of voice-activated devices and systems and over-the-phone bank transactions has made our daily affairs much easier in recent times. The ease that these systems offer also call for a need for them to be fail-safe against impersonators. Due to the sensitive information that might be shred on these systems, it is imperative that security be an utmost concern during the development stages. Vital systems like these should incorporate a functionality of discriminating between the actual speaker and impersonators. That functionality is the focus of this thesis. Several methods have been proposed to be used to achieve this system and some success has been recorded so far. However, due to the vital role this system has to play in securing critical information, efforts have been continually made to reduce the probability of error in the systems. Therefore, statistical learning methods or techniques are utilized in this thesis because they have proven to have high accuracy and efficiency in various other applications. The statistical methods used are Gaussian Mixture Models and Support Vector Machines. These methods have become the de facto techniques for designing speaker identification systems. The effectiveness of the support vector machine is dependent on the type of kernel used. Several kernels have been proposed for achieving better results and we also introduce a kernel in this thesis which will serve as an alternative to the already defined ones. Other factors including the number of components used in modeling the Gaussian Mixture Model (GMM) affect the performance of the system and these factors are used in this thesis and exciting results were obtained

    Vision-based hand shape identification for sign language recognition

    Get PDF
    This thesis introduces an approach to obtain image-based hand features to accurately describe hand shapes commonly found in the American Sign Language. A hand recognition system capable of identifying 31 hand shapes from the American Sign Language was developed to identify hand shapes in a given input image or video sequence. An appearance-based approach with a single camera is used to recognize the hand shape. A region-based shape descriptor, the generic Fourier descriptor, invariant of translation, scale, and orientation, has been implemented to describe the shape of the hand. A wrist detection algorithm has been developed to remove the forearm from the hand region before the features are extracted. The recognition of the hand shapes is performed with a multi-class Support Vector Machine. Testing provided a recognition rate of approximately 84% based on widely varying testing set of approximately 1,500 images and training set of about 2,400 images. With a larger training set of approximately 2,700 images and a testing set of approximately 1,200 images, a recognition rate increased to about 88%

    Efficient Learning Machines

    Get PDF
    Computer scienc
    • …
    corecore