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Abstract
Recognition of speech, and in particular the ability to gener-

alize and learn from small sets of labeled examples like humans
do, depends on an appropriate representation of the acoustic in-
put. We formulate the problem of finding robust speech fea-
tures for supervised learning with small sample complexity as a
problem of learning representations of the signal that are maxi-
mally invariant to intraclass transformations and deformations.
We propose an extension of a theory for unsupervised learn-
ing of invariant visual representations to the auditory domain
and empirically evaluate its validity for voiced speech sound
classification. Our version of the theory requires the memory-
based, unsupervised storage of acoustic templates – such as spe-
cific phones or words – together with all the transformations of
each that normally occur. A quasi-invariant representation for
a speech segment can be obtained by projecting it to each tem-
plate orbit, i.e., the set of transformed signals, and computing
the associated one-dimensional empirical probability distribu-
tions. The computations can be performed by modules of filter-
ing and pooling, and extended to hierarchical architectures. In
this paper, we apply a single-layer, multicomponent representa-
tion for phonemes and demonstrate improved accuracy and de-
creased sample complexity for vowel classification compared to
standard spectral, cepstral and perceptual features.
Index Terms: speech representation, invariance, acoustic fea-
tures, representation learning, speech classification

1. Introduction
The recognition of speech sounds and units (phonemes, words)
from the acoustic input, and the resilience of humans to the
range and diversity of speech variations, such as rate, mode and
style of speech, speaker state, identity, or pronunciation [1, 2],
might be related to the representation in the auditory cortex and
ventral auditory pathway [3]. Given a representation that is in-
variant to changes in the signal that do not affect the perceived
class, the task of recognition can be reduced to learning from
a few examples [4]. Hierarchical, cortex-inspired models for
selective and invariant visual representations, have shown to be
predictive of human performance and competitive to computer
vision systems [5, 6]. Their main principle, of re-using modules
of fitering and pooling in multilayered hierarchies, is also the
essence behind deep convolutional learning networks, recently
applied for speech and sound recognition [7, 8, 9, 10]. The em-
pirical successes motivate different theoretical formalisms on
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what constitutes an effective data representation and how can
one be learned in brains and machines [11, 12, 4].

In the context of learning from data, an effective represen-
tation is related to the sample complexity of a recognition prob-
lem, i.e., the number of training examples required for a given
generalization error [13]. In that respect, an appropriate repre-
sentation should be invariant to intraclass transformations, such
as affine time-frequency maps or pitch changes, discriminative
for different classes of speech ‘objects’, and stable to signal de-
formations (nonlinear warping). Invariance is a key concept to-
wards machines that learn from few labeled examples.

In this paper we propose a family of invariant representa-
tions for speech, based on a theory for unsupervised learning
of invariances [14], where a segment is represented by the em-
pirical distributions of the projections on sets of transformed
template signals. The representation is quasi-invariant and dis-
criminative for C classes, when using a finite number of tem-
plates K that depends on C, and reduces the sample complex-
ity of a supervised classification stage [4]. Assuming access
to templates and their transformations, through unsupervised
observation, and storage in the form of “neuron” synapses or
convolutional network weights, invariance can be learned in an
unsupervised way. The implied computations (dot-products and
cumulative nonlinearities) are biologically plausible, consistent
with the pooling of complex over simple cells and may suggest
a computational goal for modules of the auditory cortex.

2. Related Work
Features for speech recognition are conventionally based on
frame-level spectral representations, passed through one or
multiple layers transformations including: frequency warping
(mel or bark), compression (log, power-low), predictive cod-
ing, cosine transforms (cepstrum), normalization (e.g., loud-
ness) [15, 16]. Paths in this processing chain account for the
mel-frequency cepstral (MFC) and perceptual linear predictive
(PLP) coefficients. Robustness has been sought through repre-
sentations inspired by properties of the early and central audi-
tory cortical processing [17]. Examples include perceptual crit-
ical bands [18], long-term temporal analysis through the mod-
ulation spectrum [19] or temporal envelopes of spectral bands
[20], the auditory spectrogram [21] and spectrotemporal recep-
tive fields [22] for multiresolution (frequency/rate/scale) anal-
ysis, localized time-frequency modulation tuning [23, 24], and
hierarchical organization [25]. The representational effect of the
transformed feature maps is to ignore irrelevant and noisy com-
ponents of the speech signal, impose invariance by smoothing
out nonphonetic variations and integrating information across
time/frequency selective regions.

Speech recognition witnessed performance gains by replac-
ing feature extraction and acoustic modeling with multilayered,



deep networks [26, 10]. Convolutional networks [9, 27], which
interchange convolution and pooling layers for local time [7] or
frequency [26] invariance, result in distributed representations
that are tolerant to speech variability (speaker and noise) in a
data driven way [28]. Their performance though depends on
abundant labeled examples, for learning the filters and depen-
dencies in a supervised way. A scattering transform represen-
tation [12] builds shift-invariance and warp-stability over long
temporal windows through cascades of analytic wavelet con-
volutions and modulus operators [8]. Our proposed invariant
representation is learned in a feed-forward, unsupervised mode,
using stored filter-templates, does not explicitly model the sig-
nal and is feature-agnostic, i.e. it can be derived from any base
speech representation.

3. Group-Invariant Speech Representations
Transformations, Invariance and Learning: Let Φ(s) be a
representation of a one-dimensional, time-varying signal s ∈
X , with X ⊂ Rd, or L2(R), the d-dimensional representa-
tion space indexed by time, frequency or (any) coding coeffi-
cient samples. For a signal processed or mapped from the raw
sound waveform to some feature space Φ0(s), X can be, for
example the space of spectral coefficients or spectro-temporal
patches. The dimension d depends on the length of the repre-
sented speech unit (frame, phone, sub-word, word).

Signal instances s belong to some ground-truth class
y ∈ Y = {1, . . . , C}, depending on the task (e.g., phonetic,
lexical, speaker class). Given a (training) set of n pairs
{(si, yi)}ni=1 ∈ (X ,Y), sampled from an unknown distribu-
tion, the supervised learning problem, posed here as a multi-
class classification task, is to estimate a function f : X → Y
which predicts or assigns label y ∈ Y in a sample s ∈ X . A
representation or map Φ(s) : X → Rd, is said to be be dis-
criminative (or unique with respect to individual class mem-
bers), when Φ(s) 6= Φ(s′)⇔f(s) 6= f(s′), invariant to intr-
aclass variations caused by class-preserving transformations
s′ = gs when Φ(s) = Φ(s′)⇔f(s′) = f(s), and stable, i.e.,
Lipschitz continuous when d(Φ(s),Φ(s′)) ≤ L‖s− s′‖2, for
some metric d(·) and L ≤ 1. An invariant representation Φ(s)
on X reduces the number n of labeled examples required for
learning f with a given generalization error [4, 13].

A large family of typical speech transformations and defor-
mations can be described by s′(t) = v(t) ∗ s(φ(t)) + n(t),
where ∗ denotes convolution/filtering by v(t), n(t) is noise,
and φ(t) a linear or nonlinear function that applies mapping
t 7→ φ(t) on signal s(t). These include affine maps (transla-
tion and scaling φa,τ (t) = at− τ , nonlinear time-warping, and
more complex, domain-dependent changes like pronunciation,
dialect, context, emotion etc. They can occur or mapped in time
s(t), frequency S(ω) or joint spectro-temporal domains.

3.1. Modules For Invariant Representations

Transformations of a signal s can be described through a group
G (e.g. the affine group in R), as the result of the action of
an element g ∈ G on the signal gs(t) = s(g−1t) [12]. A
representation Φ(s) is said to be invariant to group G, if the
action of any g ∈ G does not have an effect on it:

Φ(gs) = Φ(s), ∀g ∈ G (1)

The set of transformed signals gs,∀g ∈ G, generated under the
action of G on s, is the group orbit

Os = {gs ∈ Rd| g ∈ G}, (2)

with an equivalence relation defined by G for signals that be-
long to the same orbit: s ∼ s′⇔∃g ∈ G: s′ = gs. The orbit is
then an invariant representation of s, since Os = Ogs,∀g ∈ G.
An empirical measure of Os is the high-dimensional probabil-
ity distribution Ps, ∀gs ∈ Os, which is invariant and unique. It
can thus be used for comparing orbits, and by equivalence, the
mapped signals: s ∼ s′⇔Os ∼ O′s⇔Ps ∼ P ′s.

A metric on d-dimensional distributions Ps can be approx-
imated, following Cramér-Wold Theorem and concentration of
measures [4], through a finite number of one-dimensional distri-
butions {P〈s,tk〉}Kk=1 induced from the projections of gs on K
template signals {tk}Kk=1, where 〈·, ·〉 is a dot-product defined
in signal space X . Estimation of the distribution of projections
on a single tk requires access to all signal transformations gs
under G. For unitary groups, and normalized dot-products, i.e.
〈s, tk〉/

(
‖s‖‖tk‖

)
, the property

〈gs, tk〉 = 〈s, g−1tk〉, (3)

allows for obtaining the one-dimensional distribution for tk

through all projections of s on the transformations of tk under
G. The main implication is that an invariant representation can
be learned in a memory based, unsupervised way from stored,
transformed versions of a large but finite number of templates.

An estimate of the empirical distribution for a finite group
G is obtained by the cumulative summation through a set of N
nonlinear functions {ηn(·)}Nn=1:

µkn(s) =
1

|G|

|G|∑
j=1

ηn
(
〈s, g−1

j tk〉
)

(4)

Depending on the form of η(·), the above estimate is the cumu-
lative distribution function (i.e., smooth sigmoid functions for
N bins) or any moment (mean, second-order energy, approx.
max etc.). Note that, the set of all moments determines a distri-
bution of bounded-support as in P〈s,tk〉. Equation (3) describes
a generic pooling mechanism over dot-products with functions
gtk, that is invariant to the actions of the group as a group aver-
age. The final signature is the collection of all estimates, for all
K templates, Φ(s) = ({µ1

n(s)}, . . . , {µkn(s)}) ∈ RNK or:

Φ(s) = (µ1
1(s), . . . , µ1

N (s), . . . , µk1(s), . . . , µkN (s)). (5)

By extension, partial invariance to any complex, but smooth
transformationG, can be achieved for sufficiently localized dot-
products (partially-observable groups), through the local lin-
earization of the transformation [4].

3.2. Obtaining Templates and Orbit Samples

The template signals tk can in principle be random and even un-
related to the input speech segment (for the case of affine trans-
formations), e.g., coming from different phonetic categories.
The number of templates required for discriminating C classes
is K ≥ (2/cε2) log(C/δ), for an ε-approximation error of the
true distributions by the K empirical estimates with confidence
1 − δ2. The theory requires stored templates and their trans-
formations, which involves no supervision and is equivalent to
setting the weights of the representation architecture. The trans-
formations for a given template tk, or equivalently, the sam-
ples from the transformation orbitOkt , can be acquired, through
unsupervised observation via the assumption of temporal ad-
jacency: sounds close together in time correspond with high
probability to the same source undergoing a transformation (i.e.,
speech changing in time, the phonetic variations of a speaker, or



the examples provided to children by caregivers during develop-
ment and language learning [29]). This is the biological equiv-
alent of sampling the class-specific subspace of X and storing
samples from the orbits Okt of template tk in an unsupervised
way, i.e., the label of tk is not important.

For learning speech representations for machine-based
recognition, the templates and transformations can also be
stored (like in a pre-trained network), or obtained by trans-
forming a set of randomly selected templates [14]. This be-
longs to a family of techniques for augmenting training datasets
for machine learning [30, 31]. Given unlabeled but structured
data (i.e., belonging to different sound categories, speaker or di-
alect classes), clustering or spectral clustering can be used for
forming partitions that correspond to smoothly varying signals,
approximating samples from smooth transformation groups.
Given a few examples (templates) tk, online learning, and boot-
strapping estimates of the empirical distributions, can be used
for progressively adding examples to the orbit sets {gjtk}. Ob-
servations that are not added can form new orbit sets. Templates
can be chosen from a set different from the learning set, using
categorical grouping, for example picking samples from differ-
ent phones, speakers, dialects, etc. In this paper (Sec. 5.2) we
explore both using phonetic category groups (templates are dif-
ferent vowels) and clustering.

4. Computing Segment Representations
Re-using pooling-filtering modules with templates of smaller
support and adding layers on top of representation (5), can in-
crease the range of invariance and selectivity to larger signal
parts [4, 11]. For this paper, we consider a single-layer rep-
resentation at the level of segmented phones (50-200ms), that
has multiple components (one per template). It assumes that
templates and input are in the same space and have the same
support. A fixed-length base representation, that handles vary-
ing lengths, is obtained by local averaging of features across
frames (Sec. 5.1). An interpretation, in terms of our model, is
that waveforms are mapped on a base (0-th or 1-st) feature layer
through (adaptive) time and frequency pooling (filterbanks).

Consider an input setX = {xi}ni=1 ∈ X ⊂Rd, where xi =
Φ0(si) the d-dimensional base representation of the segment.
For each x ∈ X, t ∈ X , the dot-product 〈x, tk〉 is given by xT t,
as X ⊂Rd. Assume access to a different set T ∈ X , denoted as
the template set, to be used as a pool of data (observations) for
obtaining templates tk and samples from their orbit sets, i.e.,
transformations tkj = {gjtk} for arbitrary and unknown {gj}.
The template dataset T is partitioned into K non-overlapping
subsets Tk = {tkj }|Tk|

j=1 , T =
⋃K
k=1 Tk, using categorical group-

ing or distance-based/spectral clustering. Under such a mean-
ingful partition, that preserves some structure in the data, we
approximate Eq. (4) by µkn(x) ≈ |Tk|−1∑|Tk|

j=1 ηn
(
〈x, tkj 〉

)
.

For each input instance xi, the representation is obtained
in three steps: 1) Filtering: estimate the normalized dot-
product between xi and template tkj , for each template in Tk
and each of the K sets, 2) Pooling: apply nonlinear functions
(histograms) on the projection values within each Tk, 3) Sig-
nature: concatenate components from all subsets. If matrix
X = (x1, . . . , xn)T holds the row-wise arrangement of sam-
ples, Tk = (tk1 , . . . , t

k
|Tk|)

T , X̃, T̃ the zero-mean/unit-norm
normalized matrices, row- and column-wise respectively, and Ik
the |T |×1 indicator vector for subset k, the computations can be
written: X̃T̃T

k (projection on the set of one template k), X̃T̃T

(projection on all K template sets), ηk(X̃[T̃T
1 , . . . , T̃

T
K ]Ik)

(pooling over the elements of a set k).

Figure 1: Vowels (/ae/, /aa/, /eh/) of TIMIT Core Set in
base PLP-∆ (left) and proposed invariant representation space
(right), shown as three-dimensional t-SNE embeddings [32].

5. Vowel Classification
To demonstrate the potential of the proposed speech representa-
tion, we present comparisons with standard spectral and cepstral
features for an acoustic classification task on TIMIT dataset.
We focus on vowels, including dipthongs, the largest and most
challenging phonetic subcategory on the set [33]. For the task of
classifying pre-segmented phone instances in 20 vowel classes,
we use supervised linear classifiers without post-mapping the
vowel categories prior to scoring. We train multiclass Regular-
ized Least Squares (RLS) with linear kernels [34], using 1/6
of the training set for validating the regularization parameter.
The use of a kernel-based, nonlinear RLS is expected to further
improve the classification accuracy [35, 36].

We used the standard Train (462 speakers, 45572 vowel to-
kens) and Test (168 speakers, 16580 vowel tokens) partitions
and evaluate performance through phone error rates on the Core
set (24 speakers, 2341 vowel tokens). For templates and orbit
sets, we use either the standard development subset (50 speak-
ers, 4938 vowel tokens), which we denote as “Dev” or the re-
maining Test excluding Core (118 speakers, 14239 vowel to-
kens), which we denote as “Res”. Note that, the distribution of
tokens across the 20 vowel classes is similar on all sets.

5.1. Baseline Features and Base Representations

We used four base representations, extracted using HTK [37]
at frame level from the segmented phones expanded by 30ms.
An analysis window of 25ms at 16kHz, with 10ms shifts was
used for frame-level encoding. Features were enhanced by first
and second-order derivatives (∆−∆∆), to incorporate tempo-
ral context. Frames were aggregated across the phoneme dura-
tion by averaging on three segments (3-4-3 ratio) [36, 38] and on
the two boundary extensions, resulting on a 5-component rep-
resentation of dimension d′ = 5 × 3 × d, with d = |Φ0(·)|
the length of the frame level features. Four types of coeffi-
cients where used for encoding: mel-frequency spectral (MFS,
d = 41), log-MFS filterbank (MFB, d = 41), mel-frequency
cepstral (MFC, d = 13) and perceptual linear prediction (PLP,
d = 13), with standard filterbank and cepstral parameters:
40 mel-bank for MFS (plus frame energy), 26 mel-bank for
MFC/PLP (order 12), keeping 13 coefficients (including 0th).

5.2. Template Sets and Signature Derivation

As a case study, we consider templates from the same phonetic
categories (/vowels/) and samples of “transformed templates”



RLS |T | K Groups Dim bER (%) ER (%) |T | K Groups Dim bER (%) ER (%)
OVA MFS-∆ 615 57.72 48.95 MFB-∆ 615 52.72 45.15
OVA InvR(MFS-∆) Dev 20 phn 400 56.02 49.47 InvR(MFB-∆) Dev 20 phn 400 53.53 47.71
OVA InvR(MFS-∆) Res 20 phn 400 54.98 48.91 InvR(MFB-∆) Res 20 phn 400 48.77 44.47
OVA InvR(MFS-∆) Res 135 phn-dr 2700 51.67 45.36 InvR(MFB-∆) Res 135 phn-dr 2700 47.85 43.06
OVA InvR(MFS-∆) Res 120 kmeans 2400 55.84 47.24 InvR(MFB-∆) Res 120 kmeans 2400 55.10 46.60

OVA MFC-∆ 195 54.08 45.92 PLP-∆ 195 53.52 45.24
OVA InvR(MFC-∆) Dev 20 phn 400 45.67 41.82 InvR(PLP-∆) Dev 20 phn 400 45.66 41.99
OVA InvR(MFC-∆) Res 20 phn 400 41.56 38.66 InvR(PLP-∆) Res 20 phn 400 43.04 39.64
OVA InvR(MFC-∆) Res 135 phn-dr 2700 41.10 37.80 InvR(PLP-∆) Res 135 phn-dr 2700 42.30 38.53
OVA InvR(MFS-∆) Res 200 kmeans 4000 46.48 41.61 InvR(PLP-∆) Res 200 kmeans 4000 45.75 41.31

Table 1: Vowel classification error (ER) and balanced error rate (bER) using different base representations Φ0(s), the proposed
Φ(s) = InvR(Φ0) and linear Regularized Least Squares classifiers (OVA: One-vs-All).

obtained from a template set not used for learning, in our case
either the “Dev” or the “Res” TIMIT sets (the latter roughly
three times larger). All instances in the set are assigned to a
group, either based on categorical metadata (e.g., phone, word,
phrase, dialect, speaker) or by clustering on the base feature
space. Even though a form of labeling is used in the former,
this serves only to simulate the unsupervised observation of the
orbit samples (e.g., “/aa/ instances of one dialect region”). We
usedN -bin histograms for the empirical distributions {µkn}Nn=1

which outperformed in this task other moment sets. All re-
ported results refer to N=20 bins. The final KN -dimensional
signature Φ(s) in (5) formed by concatenating K histograms,
each derived from the projections to all elements of a single set.
All projections, as in Sec. 4, are normalized dot-products and
feature matrices are standardized (using the training set) before
both the projections and the classification.

5.3. Evaluations and Discussion

Table 1 shows classification results for the 20-class task on Core
Set, listing both average and balanced error rates. Each block
corresponds to a different base representation Φ0(s) and the
proposed invariant representation built on top of it, i.e., using
dot-products on this space, is denoted by InR(·). Results with
three potential partitions of the template set T on subsets are
shown: phoneme category (phn), phoneme and dialect category
(phn-dr) and kmeans. The number of groups depend on T for
the first two (K = 20 and 135 resp.), while for the latter is a
free parameter (here K = 120 and K = 200).

The invariant representation, using the richer “Res” set, sys-
tematically improves accuracy with One-Vs-All (OVA) classi-
fiers, with a decrease in error rates of 8.12% (MFC-∆ ) and
6.7% (PLP-∆ ). Using the smaller “Dev” set improves accuracy
in the case of the decorrelated features by 4.1% for MFC-∆ and
3.25% for PLP-∆ . Thus, the number of orbit samples (or trans-
formed templates) is related to more accurate group averages,
which is aligned with the theoretic requirements access to the
entire orbit. For forming the orbit sets, the best results are ob-
tained by using the phn-dr category, that assumes a template
for one phonetic category over one dialect, giving 135 template
orbit sets for “Res”. In this case, the set labels the 20 cate-
gories of the supervised task; the scheme provides the overall
best accuracy (37.80% error for MFC-∆ ). This performance
is comparable to previously reported segmental-based classifi-
cation results [24], without using additional cues (vowel log-
duration [35, 36, 38, 2]) and One-Vs-One (OVO) schemes. Re-
sults with the cosine-distance kmeans clustering of the template
set are better than baselines but lacking compared to the phn-dr,
that seemingly provides better orbit approximations. On sam-

Figure 2: Classification error dependency on the size of training
set, decreasing TIMIT Train Set from 45572 to 46 (20-class,
TIMIT Core Test). The plots correspond to the best baseline
with PLP-∆ , with and without the invariant representation, av-
eraged over 500 random partitions at each fraction level.

ple complexity, the proposed representation attains performance
comparable to the 37.55% PLP-∆ performance on OVO (190
binary classifiers). Fig. 2 shows how the proposed representa-
tion is consistently better than standard PLP while decreasing
the training set size down to three orders.

6. Conclusions
A novel representation for acoustic signals was proposed on the
basis of a theory for learning representations, with formal as-
sertions for invariance to simple and complex, but localized,
transformations. The theory explains the properties of hierar-
chical architectures, specifies how to build representations of
improved supervised learning capacity and conjectures a mode
for their unsupervised learning in the auditory cortex. We em-
pirically demonstrated that a single-layer, phone-level repre-
sentation, inspired by these principles and extracted from base
speech features, improves segment classification accuracy and
decreases the number of training examples. We plan to evaluate
multilayer, hierarchical extensions for larger-scale speech rep-
resentations (e.g., words) on zero-resource matching [15] and
the applicability for acoustic modeling in ASR. We are also
working towards group-structure-aware unsupervised and on-
line learning of the template orbit sets.
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