100,666 research outputs found

    Increasing the spatial resolution of agricultural land cover maps using a Hopfield neural network

    No full text
    Land cover class composition of remotely sensed image pixels can be estimated using soft classification techniques increasingly available in many GIS packages. However, their output provides no indication of how such classes are distributed spatially within the instantaneous field of view represented by the pixel. Techniques that attempt to provide an improved spatial representation of land cover have been developed, but not tested on the difficult task of mapping from real satellite imagery. The authors investigated the use of a Hopfield neural network technique to map the spatial distributions of classes reliably using information of pixel composition determined from soft classification previously. The approach involved designing the energy function to produce a ‘best guess’ prediction of the spatial distribution of class components in each pixel. In previous studies, the authors described the application of the technique to target identification, pattern prediction and land cover mapping at the sub-pixel scale, but only for simulated imagery.We now show how the approach can be applied to Landsat Thematic Mapper (TM) agriculture imagery to derive accurate estimates of land cover and reduce the uncertainty inherent in such imagery. The technique was applied to Landsat TM imagery of small-scale agriculture in Greece and largescale agriculture near Leicester, UK. The resultant maps provided an accurate and improved representation of the land covers studied, with RMS errors for the Landsat imagery of the order of 0.1 in the new fine resolution map recorded. The results showed that the neural network represents a simple efficient tool formapping land cover from operational satellite sensor imagery and can deliver requisite results and improvements over traditional techniques for the GIS analysis of practical remotely sensed imagery at the sub pixel scale

    Learning Latent Super-Events to Detect Multiple Activities in Videos

    Full text link
    In this paper, we introduce the concept of learning latent super-events from activity videos, and present how it benefits activity detection in continuous videos. We define a super-event as a set of multiple events occurring together in videos with a particular temporal organization; it is the opposite concept of sub-events. Real-world videos contain multiple activities and are rarely segmented (e.g., surveillance videos), and learning latent super-events allows the model to capture how the events are temporally related in videos. We design temporal structure filters that enable the model to focus on particular sub-intervals of the videos, and use them together with a soft attention mechanism to learn representations of latent super-events. Super-event representations are combined with per-frame or per-segment CNNs to provide frame-level annotations. Our approach is designed to be fully differentiable, enabling end-to-end learning of latent super-event representations jointly with the activity detector using them. Our experiments with multiple public video datasets confirm that the proposed concept of latent super-event learning significantly benefits activity detection, advancing the state-of-the-arts.Comment: CVPR 201

    BLADE: Filter Learning for General Purpose Computational Photography

    Full text link
    The Rapid and Accurate Image Super Resolution (RAISR) method of Romano, Isidoro, and Milanfar is a computationally efficient image upscaling method using a trained set of filters. We describe a generalization of RAISR, which we name Best Linear Adaptive Enhancement (BLADE). This approach is a trainable edge-adaptive filtering framework that is general, simple, computationally efficient, and useful for a wide range of problems in computational photography. We show applications to operations which may appear in a camera pipeline including denoising, demosaicing, and stylization
    corecore