5,373 research outputs found

    Multi-Layer Cyber-Physical Security and Resilience for Smart Grid

    Full text link
    The smart grid is a large-scale complex system that integrates communication technologies with the physical layer operation of the energy systems. Security and resilience mechanisms by design are important to provide guarantee operations for the system. This chapter provides a layered perspective of the smart grid security and discusses game and decision theory as a tool to model the interactions among system components and the interaction between attackers and the system. We discuss game-theoretic applications and challenges in the design of cross-layer robust and resilient controller, secure network routing protocol at the data communication and networking layers, and the challenges of the information security at the management layer of the grid. The chapter will discuss the future directions of using game-theoretic tools in addressing multi-layer security issues in the smart grid.Comment: 16 page

    A contrasting look at self-organization in the Internet and next-generation communication networks

    Get PDF
    This article examines contrasting notions of self-organization in the Internet and next-generation communication networks, by reviewing in some detail recent evidence regarding several of the more popular attempts to explain prominent features of Internet structure and behavior as "emergent phenomena." In these examples, what might appear to the nonexpert as "emergent self-organization" in the Internet actually results from well conceived (albeit perhaps ad hoc) design, with explanations that are mathematically rigorous, in agreement with engineering reality, and fully consistent with network measurements. These examples serve as concrete starting points from which networking researchers can assess whether or not explanations involving self-organization are relevant or appropriate in the context of next-generation communication networks, while also highlighting the main differences between approaches to self-organization that are rooted in engineering design vs. those inspired by statistical physics

    Implementation of Model Based Networked Predictive Control System

    Get PDF
    Networked control systems are made up of several computer nodes communicating over a communication channel, cooperating to control a plant. The stability of the plant depends on the end to end delay from sensor to the actuator. Although computational delays within the computer nodes can be made bounded, delays through the communication network are generally unpredictable. A method which aims to protect the stability of the plant under communication delays and data loss, Model Based Predictive Networked Control System (MBPNCS), has previously been proposed by the authors. This paper aims to demonstrate the implementation of this type of networked control system on a non-real-time communication network; Ethernet. In this paper, we first briefly describe the MBPNCS method, then discuss the implementation, detailing the properties of the operating system, communications and hardware, and later give the results on the performance of the Model Based Predictive Networked Control System implementation controlling a DC motor. This work was supported in part by the Scientific and Technological Re search Council of Turkey, project code 106E155

    Optimal redundancy against disjoint vulnerabilities in networks

    Get PDF
    Redundancy is commonly used to guarantee continued functionality in networked systems. However, often many nodes are vulnerable to the same failure or adversary. A "backup" path is not sufficient if both paths depend on nodes which share a vulnerability.For example, if two nodes of the Internet cannot be connected without using routers belonging to a given untrusted entity, then all of their communication-regardless of the specific paths utilized-will be intercepted by the controlling entity.In this and many other cases, the vulnerabilities affecting the network are disjoint: each node has exactly one vulnerability but the same vulnerability can affect many nodes. To discover optimal redundancy in this scenario, we describe each vulnerability as a color and develop a "color-avoiding percolation" which uncovers a hidden color-avoiding connectivity. We present algorithms for color-avoiding percolation of general networks and an analytic theory for random graphs with uniformly distributed colors including critical phenomena. We demonstrate our theory by uncovering the hidden color-avoiding connectivity of the Internet. We find that less well-connected countries are more likely able to communicate securely through optimally redundant paths than highly connected countries like the US. Our results reveal a new layer of hidden structure in complex systems and can enhance security and robustness through optimal redundancy in a wide range of systems including biological, economic and communications networks.Comment: 15 page

    Understanding Communication Patterns in MOOCs: Combining Data Mining and qualitative methods

    Full text link
    Massive Open Online Courses (MOOCs) offer unprecedented opportunities to learn at scale. Within a few years, the phenomenon of crowd-based learning has gained enormous popularity with millions of learners across the globe participating in courses ranging from Popular Music to Astrophysics. They have captured the imaginations of many, attracting significant media attention - with The New York Times naming 2012 "The Year of the MOOC." For those engaged in learning analytics and educational data mining, MOOCs have provided an exciting opportunity to develop innovative methodologies that harness big data in education.Comment: Preprint of a chapter to appear in "Data Mining and Learning Analytics: Applications in Educational Research

    Heuristics of node selection criteria to assess robustness of world airport network

    Get PDF
    The world airport network (WAN) is one of the networked infrastructures that shape today's economic and social activity, so its resilience against incidents affecting the WAN is an important problem. In this paper, the robustness of air route networks is extended by defining and testing several heuristics to define selection criteria to detect the critical nodes of the WAN. In addition to heuristics based on genetic algorithms and simulated annealing, custom heuristics based on node damage and node betweenness are defined. The most effective heuristic is a multi-attack heuristic combining both custom heuristics. Results obtained are of importance not only for advance in the understanding of the structure of complex networks, but also for critical node detection.Peer ReviewedPostprint (author's final draft
    corecore