1,259 research outputs found

    Amplitude and phase sonar calibration and the use of target phase for enhanced acoustic target characterisation

    Get PDF
    This thesis investigates the incorporation of target phase into sonar signal processing, for enhanced information in the context of acoustical oceanography. A sonar system phase calibration method, which includes both the amplitude and phase response is proposed. The technique is an extension of the widespread standard-target sonar calibration method, based on the use of metallic spheres as standard targets. Frequency domain data processing is used, with target phase measured as a phase angle difference between two frequency components. This approach minimizes the impact of range uncertainties in the calibration process. Calibration accuracy is examined by comparison to theoretical full-wave modal solutions. The system complex response is obtained for an operating frequency of 50 to 150 kHz, and sources of ambiguity are examined. The calibrated broadband sonar system is then used to study the complex scattering of objects important for the modelling of marine organism echoes, such as elastic spheres, fluid-filled shells, cylinders and prolate spheroids. Underlying echo formation mechanisms and their interaction are explored. Phase-sensitive sonar systems could be important for the acquisition of increased levels of information, crucial for the development of automated species identification. Studies of sonar system phase calibration and complex scattering from fundamental shapes are necessary in order to incorporate this type of fully-coherent processing into scientific acoustic instruments

    Aspects of room acoustics, vision and motion in the human auditory perception of space

    Get PDF
    The human sense of hearing contributes to the awareness of where sound-generating objects are located in space and of the environment in which the hearing individual is located. This auditory perception of space interacts in complex ways with our other senses, can be both disrupted and enhanced by sound reflections, and includes safety mechanisms which have evolved to protect our lives, but can also mislead us. This dissertation explores some selected topics from this wide subject area, mostly by testing the abilities and subjective judgments of human listeners in virtual environments. Reverberation is the gradually decaying persistence of sounds in an enclosed space which results from repeated sound reflections at surfaces. The first experiment (Chapter 2) compared how strongly people perceived reverberation in different visual situations: when they could see the room and the source which generated the sound; when they could see some room and some sound source, but the image did not match what they heard; and when they could not see anything at all. There were no indications that the visual image had any influence on this aspect of room-acoustical perception. The potential benefits of motion for judging the distance of sound sources were the focus of the second study (Chapter 3), which consists of two parts. In the first part, loudspeakers were placed at different depths in front of sitting listeners who, on command, had to either remain still or move their upper bodies sideways. This experiment demonstrated that humans can exploit motion parallax (the effect that closer objects appear faster to a moving observer than farther objects) with their ears and not just with their eyes. The second part combined a virtualisation of such sound sources with a motion platform to show that the listeners’ interpretation of this auditory motion parallax was better when they performed this lateral movement by themselves, rather than when they were moved by the apparatus or were not actually in motion at all. Two more experiments were concerned with the perception of sounds which are perceived as becoming louder over time. These have been called “looming”, as the source of such a sound might be on a collision course. One of the studies (Chapter 4) showed that western diamondback rattlesnakes (Crotalus atrox) increase the vibration speed of their rattle in response to the approach of a threatening object. It also demonstrated that human listeners perceive (virtual) snakes which engage in this behaviour as especially close, causing them to keep a greater margin of safety than they would otherwise. The other study (section 5.6) was concerned with the well-known looming bias of the sound localisation system, a phenomenon which leads to a sometimes exaggerated, sometimes more accurate perception of approaching compared to receding sounds. It attempted to find out whether this bias is affected by whether listeners hear such sounds in a virtual enclosed space or in an environment with no sound reflections. While the results were inconclusive, this experiment is noteworthy as a proof of concept: It was the first study to make use of a new real-time room-acoustical simulation system, liveRAZR, which was developed as part of this dissertation (Chapter 5). Finally, while humans have been more often studied for their unique abilities to communicate with each other and bats for their extraordinary capacity to locate objects by sound, this dissertation turns this setting of priorities on its head with the last paper (Chapter 6): Based on recordings of six pale spear-nosed bats (Phyllostomus discolor), it is a survey of the identifiably distinct vocalisations observed in their social interactions, along with a description of the different situations in which they typically occur.Das menschliche Gehör trĂ€gt zum Bewusstsein dafĂŒr bei, wo sich schallerzeugende Objekte im Raum befinden und wie die Umgebung beschaffen ist, in der sich eine Person aufhĂ€lt. Diese auditorische Raumwahrnehmung interagiert auf komplexe Art und Weise mit unseren anderen Sinnen, kann von Schallreflektionen sowohl profitieren als auch durch sie behindert werden, und besitzt Mechanismen welche evolutionĂ€r entstanden sind, um unser Leben zu schĂŒtzen, uns aber auch irrefĂŒhren können. Diese Dissertation befasst sich mit einigen ausgewĂ€hlten Themen aus diesem weiten Feld und stĂŒtzt sich dabei meist auf die Testung von WahrnehmungsfĂ€higkeiten und subjektiver EinschĂ€tzungen menschlicher Hörer/-innen in virtueller RealitĂ€t. Beim ersten Experiment (Kapitel 2) handelte es sich um einen Vergleich zwischen der Wahrnehmung von Nachhall, dem durch wiederholte Reflexionen an OberflĂ€chen hervorgerufenen, sukzessiv abschwellenden Verbleib von Schall in einem umschlossenen Raum, unter verschiedenen visuellen UmstĂ€nden: wenn die Versuchsperson den Raum und die Schallquelle sehen konnte; wenn sie irgendeinen Raum und irgendeine Schallquelle sehen konnte, dieses Bild aber vom Schalleindruck abwich; und wenn sie gar kein Bild sehen konnte. Dieser Versuch konnte keinen Einfluss eines Seheindrucks auf diesen Aspekt der raumakustischen Wahrnehmung zu Tage fördern. Mögliche Vorteile von Bewegung fĂŒr die EinschĂ€tzung der Entfernung von Schallquellen waren der Schwerpunkt der zweiten Studie (Kapitel 3). Diese bestand aus zwei Teilen, wovon der erste zeigte, dass Hörer/-innen, die ihren Oberkörper relativ zu zwei in unterschiedlichen AbstĂ€nden vor ihnen aufgestellten Lautsprechern auf Kommando entweder stillhalten oder seitlich bewegen mussten, im letzteren Falle von der Bewegungsparallaxe (dem Effekt, dass sich der nĂ€here Lautsprecher relativ zum sich bewegenden Körper schneller bewegte als der weiter entfernte) profitieren konnten. Der zweite Teil kombinierte eine Simulation solcher Schallquellen mit einer Bewegungsplattform, wodurch gezeigt werden konnte, dass die bewusste Eigenbewegung fĂŒr die Versuchspersonen hilfreicher war, als durch die Plattform bewegt zu werden oder gar nicht wirklich in Bewegung zu sein. Zwei weitere Versuche gingen auf die Wahrnehmung von Schallen ein, deren Ursprungsort sich nach und nach nĂ€her an den/die Hörer/-in heranbewegte. Derartige Schalle werden auch als „looming“ („anbahnend“) bezeichnet, da eine solche AnnĂ€herung bei bedrohlichen Signalen nichts Gutes ahnen lĂ€sst. Einer dieser Versuche (Kapitel 4) zeigte zunĂ€chst, dass Texas-Klapperschlangen (Crotalus atrox) die Vibrationsgeschwindigkeit der Schwanzrassel steigern, wenn sich ein bedrohliches Objekt ihnen nĂ€hert. Menschliche Hörer/-innen nahmen (virtuelle) Schlangen, die dieses Verhalten aufweisen, als besonders nahe wahr und hielten einen grĂ¶ĂŸeren Sicherheitsabstand ein, als sie es sonst tun wĂŒrden. Der andere Versuch (Abschnitt 5.6) versuchte festzustellen, ob die wohlbekannte Neigung unserer Schallwahrnehmung, nĂ€herkommende Schalle manchmal ĂŒbertrieben und manchmal genauer einzuschĂ€tzen als sich entfernende, durch Schallreflektionen beeinflusst werden kann. Diese Ergebnisse waren unschlĂŒssig, jedoch bestand die Besonderheit dieses Versuchs darin, dass er erstmals ein neues Echtzeitsystem zur Raumakustiksimulation (liveRAZR) nutzte, welches als Teil dieser Dissertation entwickelt wurde (Kapitel 5). Abschließend (Kapitel 6) wird die Schwerpunktsetzung auf den Kopf gestellt, nach der Menschen öfter auf ihre einmaligen FĂ€higkeiten zur Kommunikation miteinander untersucht werden und FledermĂ€use öfter auf ihre außergewöhnliches Geschick, Objekte durch Schall zu orten: Anhand von Aufnahmen von sechs Kleinen Lanzennasen (Phyllostomus discolor) fasst das Kapitel die klar voneinander unterscheidbaren Laute zusammen, die diese Tiere im sozialen Umgang miteinander produzieren, und beschreibt, in welchen Situationen diese Lauttypen typischerweise auftreten

    Ultra-high-speed imaging of bubbles interacting with cells and tissue

    Get PDF
    Ultrasound contrast microbubbles are exploited in molecular imaging, where bubbles are directed to target cells and where their high-scattering cross section to ultrasound allows for the detection of pathologies at a molecular level. In therapeutic applications vibrating bubbles close to cells may alter the permeability of cell membranes, and these systems are therefore highly interesting for drug and gene delivery applications using ultrasound. In a more extreme regime bubbles are driven through shock waves to sonoporate or kill cells through intense stresses or jets following inertial bubble collapse. Here, we elucidate some of the underlying mechanisms using the 25-Mfps camera Brandaris128, resolving the bubble dynamics and its interactions with cells. We quantify acoustic microstreaming around oscillating bubbles close to rigid walls and evaluate the shear stresses on nonadherent cells. In a study on the fluid dynamical interaction of cavitation bubbles with adherent cells, we find that the nonspherical collapse of bubbles is responsible for cell detachment. We also visualized the dynamics of vibrating microbubbles in contact with endothelial cells followed by fluorescent imaging of the transport of propidium iodide, used as a membrane integrity probe, into these cells showing a direct correlation between cell deformation and cell membrane permeability

    Sonar beamforming based upon monaural localisation techniques

    Get PDF
    Includes bibliographies.Sonar beamforming is usually accomplished using a multi-element transducer array. To obtain high resolution, such a system is costly and complex. In contrast, many mammals are capable of good angular resolution using only a single active element surrounded by an irregular reflector – the ear. A study of monaural localisation was therefore undertaken, with a view to the development of a novel beamforming system which uses only a single active element. Computer simulations have shown that the direction of a source can be determined by cross –correlating the output signal spectrum with the known spectral responses of the receiving system for all angles

    An overview on structural health monitoring: From the current state-of-the-art to new bio-inspired sensing paradigms

    Get PDF
    In the last decades, the field of structural health monitoring (SHM) has grown exponentially. Yet, several technical constraints persist, which are preventing full realization of its potential. To upgrade current state-of-the-art technologies, researchers have started to look at nature’s creations giving rise to a new field called ‘biomimetics’, which operates across the border between living and non-living systems. The highly optimised and time-tested performance of biological assemblies keeps on inspiring the development of bio-inspired artificial counterparts that can potentially outperform conventional systems. After a critical appraisal on the current status of SHM, this paper presents a review of selected works related to neural, cochlea and immune-inspired algorithms implemented in the field of SHM, including a brief survey of the advancements of bio-inspired sensor technology for the purpose of SHM. In parallel to this engineering progress, a more in-depth understanding of the most suitable biological patterns to be transferred into multimodal SHM systems is fundamental to foster new scientific breakthroughs. Hence, grounded in the dissection of three selected human biological systems, a framework for new bio-inspired sensing paradigms aimed at guiding the identification of tailored attributes to transplant from nature to SHM is outlined.info:eu-repo/semantics/acceptedVersio

    Predicting and auralizing acoustics in classrooms

    Get PDF
    Although classrooms have fairly simple geometries, this type of room is known to cause problems when trying to predict their acoustics using room acoustics computer modeling. Some typical features from a room acoustics point of view are: Parallel walls, low ceilings (the rooms are flat), uneven distribution of absorption, and most of the floor being covered with furniture which at long distances act as scattering elements, and at short distance provide strong specular components. The importance of diffraction and scattering is illustrated in numbers and by means of auralization, using ODEON 8 Beta

    Electrophysiologic assessment of (central) auditory processing disorder in children with non-syndromic cleft lip and/or palate

    Get PDF
    Session 5aPP - Psychological and Physiological Acoustics: Auditory Function, Mechanisms, and Models (Poster Session)Cleft of the lip and/or palate is a common congenital craniofacial malformation worldwide, particularly non-syndromic cleft lip and/or palate (NSCL/P). Though middle ear deficits in this population have been universally noted in numerous studies, other auditory problems including inner ear deficits or cortical dysfunction are rarely reported. A higher prevalence of educational problems has been noted in children with NSCL/P compared to craniofacially normal children. These high level cognitive difficulties cannot be entirely attributed to peripheral hearing loss. Recently it has been suggested that children with NSCLP may be more prone to abnormalities in the auditory cortex. The aim of the present study was to investigate whether school age children with (NSCL/P) have a higher prevalence of indications of (central) auditory processing disorder [(C)APD] compared to normal age matched controls when assessed using auditory event-related potential (ERP) techniques. School children (6 to 15 years) with NSCL/P and normal controls with matched age and gender were recruited. Auditory ERP recordings included auditory brainstem response and late event-related potentials, including the P1-N1-P2 complex and P300 waveforms. Initial findings from the present study are presented and their implications for further research in this area —and clinical intervention—are outlined. © 2012 Acoustical Society of Americapublished_or_final_versio
    • 

    corecore